Name: _

Directions: Show all work. No credit for answers without work.

- 1. [4 parts, 1 point each] True/False. In the following, A and B are $n \times n$ matrices. Justify your answers.
 - (a) For $n \ge 4$, an $(n \times n)$ -matrix has at least 2 linearly independent eigenvectors.
 - (b) The char. polynomial of A has enough information to tell whether A is diagonalizable.
 - (c) If A and B are similar and A is diagonalizable, then B is also diagonalizable.
 - (d) If A and B are similar matrices, then det(A) = det(B).
- 2. [2 parts, 3 points each] Diagonalize the following matrices if possible. That is, for each diagonalizable matrix A below, construct an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. (There is no need to compute P^{-1} explicitly.) For each matrix A below that is not diagonalizable, explain why not.
 - (a) $\begin{bmatrix} -15 & -14\\ 21 & 20 \end{bmatrix}$

		0	10
(b)	-10	3	10
	8	0	11