Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [4 parts, 1 point each] True/False. In the following, A and B are $n \times n$ matrices. Justify your answers.
(a) For $n \geq 4$, an $(n \times n)$-matrix has at least 2 linearly independent eigenvectors.

False. For example, $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ has value $\lambda=0$ (mut. 0$)$, but the ergenspace for $\lambda=0$ is 1 -dimensional $\left(=\operatorname{Spcm}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right\}\right\}\right)$. So no 2 lin. mop. eigenvalues.
(b) The char. polynomial of A has enough information to tell whether A is diagonalizable.

FALSE. For example $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ is not diagoratizable and the all zeros matrix is,
but both have the same characteristic polynomial $f(\lambda)=(0-\lambda)^{4}=\lambda^{4}$.
(c) If A and B are similar and A is diagonalizable, then B is also diagonalizable.

True. If A is diaganalizable, then A is similar to a diagonal matrix D.
Since B and A are similar ad similarity is transitive, B is also similar to D and therefore diagonal table.
(d) If A and B are similar matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.

True. If $A \omega B$ are similar, then $A=P^{-1} B P$ for save matrix $P . S_{0}$

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(P^{-1} B P\right)=\operatorname{det}\left(P^{-1}\right) \cdot \operatorname{det}(B) \cdot \operatorname{det}(P)=\operatorname{det}(B) \cdot \operatorname{det}\left(P^{-1} \cdot P\right)=\operatorname{det}(B) \cdot \operatorname{det}(I) \\
& =\operatorname{det}(B) \cdot 1=\operatorname{det}(B)
\end{aligned}
$$

2. [2 parts, 3 points each] Diagonalize the following matrices if possible. That is, for each diagonalizable matrix A below, construct an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. (There is no need to compute P^{-1} explicitly.) For each matrix A below that is not diagonalizable, explain why not.

$$
\begin{aligned}
& =\lambda^{2}-5 \lambda+6 \cdot 7^{2}-6 \cdot 2 \cdot 5^{2}=\lambda^{2}-5 \lambda+6(49-50) \\
& =\lambda^{2}-5 \lambda-6=(\lambda-6)(\lambda+1) \text {. So } \lambda_{1}=6, \lambda_{2}=-1 \\
& \lambda_{1}=6:\left[\begin{array}{cc}
-21 & -14 \\
21 & 14
\end{array}\right] \rightarrow\left[\begin{array}{cc}
21 & 14 \\
0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
3 & 2 \\
0 & 0
\end{array}\right], \vec{V}_{1}=\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \\
& \lambda_{2}=-1\left[\begin{array}{cc}
-14 & -14 \\
21 & 21
\end{array}\right] \leadsto\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& \text { So } A=P D P^{-1} \text { where } P=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-3 & -1
\end{array}\right] \text { ar } D=\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
6 & 0 \\
0 & -1
\end{array}\right] \text {. } \\
& \text { Check: } P D P^{-1}=\left[\begin{array}{cc}
2 & 1 \\
-3 & -1
\end{array}\right]\left[\begin{array}{cc}
6 & 0 \\
0 & -1
\end{array}\right]\left(\frac{1}{(-2)+3}\right)\left[\begin{array}{cc}
-1 & -1 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-3 & -1
\end{array}\right]\left[\begin{array}{cc}
-6 & -6 \\
-3 & -2
\end{array}\right]=\left[\begin{array}{cc}
-15 & -14 \\
21 & 20
\end{array}\right] \sqrt[V]{ } \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) }\left[\begin{array}{rrr}
-7 & 0 & 10 \\
-10 & 3 & 10 \\
-8 & 0 & 11
\end{array}\right] \quad 0=\left|\begin{array}{cc}
-7-\lambda & 0 \\
-10 \\
-8 & 10 \\
3-\lambda \\
0 & -10 \\
+11-\lambda
\end{array}\right|=(\lambda-3)\left|\begin{array}{cc}
-7-\lambda & 10 \\
-8 & 11-\lambda
\end{array}\right|=(\lambda-3)[(-7-\lambda)(11-\lambda)+8.10] \\
& =(\lambda-3)\left[\lambda^{2}-4 \lambda-77+80\right]=(\lambda-3)\left[\lambda^{2}-4 \lambda+3\right]=(\lambda-3)(\lambda-3)(\lambda-1), \begin{array}{l}
\lambda_{1}=\lambda_{2}=3 \\
\lambda_{3}=1
\end{array} \\
& \left.\underline{\lambda_{1}=\lambda_{2}}=3:\left[\begin{array}{ccc}
-10 & 0 & 10 \\
-10 & 0 & 10 \\
-8 & 0 & 8
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right] \rightarrow \underset{x_{1}}{\substack{x_{2} \\
0}} \begin{array}{ccc}
1 & x_{3} & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}
x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& \text { So } \vec{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text {. } \\
& \underline{\lambda_{3}}=1:\left[\begin{array}{ccc}
-8 & 0 & 10 \\
-10 & 2 & 10 \\
-8 & 0 & 10
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-4 & 0 & 5 \\
-5 & 1 & 5 \\
-4 & 0 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
-5 & 1 & 5 \\
-4 & 0 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -4 & 5 \\
0 & -4 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -4 & 5 \\
0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc}
1 & 0 & -5 / 4 \\
0 & 1 & -5 / 4 \\
0 & 0 & 0
\end{array}\right] \quad \vec{x}=\left[\begin{array}{c}
5 / 4 x_{3} \\
5 / 4 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
5 / 4 \\
5 / 4 \\
1
\end{array}\right]=\hat{x}_{3}\left[\begin{array}{c}
5 \\
5 \\
4
\end{array}\right] \text {, so } \vec{v}_{3}=\left[\begin{array}{l}
5 \\
5 \\
4
\end{array}\right] \text {. } \\
& \text { So } A=P D P^{-1} \text { where } P=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 5 \\
1 & 0 & 5 \\
0 & 1 & 4
\end{array}\right] \text { ar } D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

