Name: Solutions
Directions: All answers must be handwritten in your own hand. Show all work. No credit for answers without work.

1. [3.5 points] Determine if the following system is consistent.

$$
\begin{aligned}
& 2 x_{1}-x_{2}-4 x_{3}=0 \\
& x_{1}-x_{2}-3 x_{3}=2 \\
& 3 x_{1}+2 x_{2}+x_{3}=-11 \\
& \text { 2. }\left[\begin{array}{cccc}
2 & -1 & -4 & 0 \\
1 & -1 & -3 & 2 \\
3 & 2 & 1 & -11
\end{array}\right] \stackrel{R 1 \leftrightarrow R 2}{\sim}\left[\begin{array}{cccc}
1 & -1 & -3 & 2 \\
2 & -1 & -4 & 0 \\
3 & 2 & 1 & -11
\end{array}\right] \\
& \begin{array}{c}
R_{2} \pm(-2) R 1 \\
R_{3} \pm(-3) R 1 \\
\sim
\end{array}\left[\begin{array}{cccc}
1 & -1 & -3 & 2 \\
0 & 1 & 2 & -4 \\
0 & 5 & 10 & -17
\end{array}\right] \quad \begin{array}{l}
R 3 \pm(-5) R 2 \\
\sim
\end{array}\left[\begin{array}{cccc}
1 & -1 & -3 & 2 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 3
\end{array}\right] \\
& x_{1}-x_{2}-3 x_{3}=2 \\
& x_{2}+2 x_{3}=-4 \\
& \text { System is inconsistent } \\
& 0=3
\end{aligned}
$$

2. [3 points] A linear equation of the form $a x_{1}+b x_{2}=c$ is degenerate if $a=0$ and $b=0$. Let E_{1}, E_{2}, and E_{3} be nondegenerate linear equations in the variables x_{1} and x_{2}. Suppose that E_{1} and E_{2} form an inconsistent system, and also E_{2} and E_{3} form an inconsistent system. What can you conclude about the size of the solution set of the system formed by E_{1} and E_{3} ? Justify your answer.
If E_{1} and E_{2} form an inconsistent system, then the corresponding lines l_{1} as l_{2} are parallel. Similarly, l_{2} af l_{3} are parallel. Therefore l_{1} and l_{3} are parallel. Hence eitur $l_{1}=l_{3}$, and the system formed by E_{1} ad E_{3} has infinitely many solutions, or l_{1} and l_{3} do not intersect and this system has no solutions.

Cane 1: Infinity many sorbacu

3. [3.5 points] Solve the following system.

1. $\left.\left[\begin{array}{cccc}1 & 2 & -1 & 10 \\ 2 & 1 & 1 & -1 \\ -2 & 0 & 1 & -1\end{array}\right] \stackrel{R 2}{R_{2} \pm}(-2)(R 1)\right]\left[\begin{array}{cccc}1 & 2 & -1 & 10 \\ R_{3} \\ \sim & 2(R 1) \\ 0 & -3 & 3 & -21 \\ 0 & 4 & -1 & 19\end{array}\right]$
$\sim\left[\begin{array}{cccc}1 & 2 & -1 & 10 \\ 0 & 1 & -1 & 7 \\ 0 & 4 & -1 & 19\end{array}\right] \xrightarrow{\sim 3 \pm(-4)(R 2)}\left[\begin{array}{cccc}1 & 2 & -1 & 10 \\ 0 & 1 & -1 & 7 \\ 0 & 0 & 3 & -9\end{array}\right]$

$$
\stackrel{R 3 \cdot \frac{1}{3}}{\sim}\left[\begin{array}{cccc}
1 & 2 & -1 & 10 \\
0 & 1 & -1 & 7 \\
0 & 0 & 1 & -3
\end{array}\right] \stackrel{\begin{array}{l}
R 2 \pm R 3 \\
R 1 \pm R 3
\end{array}}{\sim}\left[\begin{array}{llll}
1 & 2 & 0 & 7 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -3
\end{array}\right]
$$

$$
\underset{\sim}{R 1 \pm(-2) R 2}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -3
\end{array}\right] \quad \Rightarrow \quad \begin{array}{rll}
x_{1} & & \\
\sim & -1 \\
x_{2} & =4 \\
& =-3
\end{array}
$$

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=10 \\
& 2 x_{1}+x_{2}+x_{3}=-1 \\
& -2 x_{1}+x_{3}=-1
\end{aligned}
$$

