Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

- 1. [2.9.5] Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -3 \\ -7 \\ 5 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 4 \\ 10 \\ -7 \end{bmatrix}$. Let \mathcal{B} be the basis given by the ordered set $\{\mathbf{b}_1, \mathbf{b}_2\}$. Find the \mathcal{B} -coordinate vector of \mathbf{x} , which we also denote by $[\mathbf{x}]_{\mathcal{B}}$.
- 2. [2.9.{17-22}] True/False. Justify your answers.
 - (a) If $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ is a basis for a subspace H and if $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$, then c_1, \dots, c_p are the coordinates of \mathbf{x} relative to the basis \mathcal{B} .
 - (b) If \mathcal{B} is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in \mathcal{B} .
 - (c) Each line in \mathbb{R}^n is a one-dimensional subspace of \mathbb{R}^n .
 - (d) The dimension of the column space of A is rank A.
 - (e) If H is a p-dimensional subspace of \mathbb{R}^n , then a linearly independent set of p vectors in H is a basis for H.
- 3. [3.1.{1-14}] Use cofactor expansion to compute the determinants of the following matrices.

(a)	$\begin{array}{c} 3\\2\\0\end{array}$	$0\\3\\5$		(c)	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 2 \end{array} $	$-2 \\ 0 \\ -4 \\ 0$	$4 \\ -3 \\ 3$	$2 \\ 0 \\ 5 \\ 5$	
(b)	$\begin{vmatrix} 4 \\ 6 \\ 9 \end{vmatrix}$	${3 \atop {5} \over {7}}$	$\begin{array}{c c}0\\2\\3\end{array}$	(d)	4 0 7 5 0	0 - 0 - 3 - 0 - 0	$-7 \\ 2 \\ -6 \\ 5 \\ 9$	$3 \\ 0 \\ 4 \\ 2 \\ -1$	$-5 \\ 0 \\ -8 \\ -3 \\ 2$

- 4. [3.1.{19,20,22}] These exercises explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.
 - (a) $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$ (b) $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\begin{bmatrix} a & b \\ kc & kd \end{bmatrix}$ (c) $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\begin{bmatrix} a+kc & b+kd \\ c & d \end{bmatrix}$
- 5. [3.1.38] Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and let k be a scalar. Find a formula that relates det kA to k and det(A).