Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [2.9.5] Let $\mathbf{b}_{1}=\left[\begin{array}{r}1 \\ 5 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}-3 \\ -7 \\ 5\end{array}\right]$, and $\mathbf{x}=\left[\begin{array}{r}4 \\ 10 \\ -7\end{array}\right]$. Let \mathcal{B} be the basis given by the ordered set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find the \mathcal{B}-coordinate vector of \mathbf{x}, which we also denote by $[\mathbf{x}]_{\mathcal{B}}$.
2. [2.9.\{17-22\}] True/False. Justify your answers.
(a) If $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a basis for a subspace H and if $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$, then c_{1}, \ldots, c_{p} are the coordinates of \mathbf{x} relative to the basis \mathcal{B}.
(b) If \mathcal{B} is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in \mathcal{B}.
(c) Each line in \mathbb{R}^{n} is a one-dimensional subspace of \mathbb{R}^{n}.
(d) The dimension of the column space of A is rank A.
(e) If H is a p-dimensional subspace of \mathbb{R}^{n}, then a linearly independent set of p vectors in H is a basis for H.
3. [3.1. $\{1-14\}]$ Use cofactor expansion to compute the determinants of the following matrices.
(a) $\left|\begin{array}{rrr}3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1\end{array}\right|$
(c) $\left|\begin{array}{rrrr}1 & -2 & 4 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -4 & -3 & 5 \\ 2 & 0 & 3 & 5\end{array}\right|$
(b) $\left|\begin{array}{lll}4 & 3 & 0 \\ 6 & 5 & 2 \\ 9 & 7 & 3\end{array}\right|$
(d) $\left|\begin{array}{rrrrr}4 & 0 & -7 & 3 & -5 \\ 0 & 0 & 2 & 0 & 0 \\ 7 & 3 & -6 & 4 & -8 \\ 5 & 0 & 5 & 2 & -3 \\ 0 & 0 & 9 & -1 & 2\end{array}\right|$
4. [3.1. $\{19,20,22\}]$ These exercises explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.
(a) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{ll}c & d \\ a & b\end{array}\right]$
(b) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{rr}a & b \\ k c & k d\end{array}\right]$
(c) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{rr}a+k c & b+k d \\ c & d\end{array}\right]$
5. [3.1.38] Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and let k be a scalar. Find a formula that relates $\operatorname{det} k A$ to k and $\operatorname{det}(A)$.
