Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. True/False. In the following, A, B, and C are matrices for which the given expressions are defined. Justify your answer.
(a) Each column of $A B$ is a linear combination of the columns of B using weights from the corresponding column of A.
(b) The second row of $A B$ is the second row of A multiplied on the right by B.
(c) $A^{T}+B^{T}=(A+B)^{T}$.
(d) $(A B) C=(A C) B$
(e) $(A B)^{T}=A^{T} B^{T}$
(f) If A can be row reduced to the identity matrix, then A must be invertible.
(g) Each elementary matrix is invertible.
(h) If A is invertible, then the elementary row operations that reduce A to the identity I_{n} also reduce A^{-1} to I_{n}.
(i) If the columns of an $n \times n$ matrix A are linearly independent, then they span \mathbb{R}^{n}.
(j) A square matrix with two identical columns is singular.
2. [2.1.32] Let A be an $(m \times n)$ matrix and let D be an $(n \times m)$ matrix such that $A D=I_{m}$. Show that for each $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution. [Hint: Think about the equation $A D \mathbf{b}=\mathbf{b}$.] Also show that $m \leq n$.
3. [2.2. $\{39-42\}]$ Find the inverses of the following matrices, if they exist. Use the row reduction algorithm.
(a) $\left[\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4\end{array}\right]$
(b) $\left[\begin{array}{rr}5 & 10 \\ 4 & 7\end{array}\right]$
(d) $\left[\begin{array}{rrr}1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4\end{array}\right]$
4. [2.3. $\{1,2,6,7,8\}]$ Using as few calculations as possible, determine if the following matrices are invertible. (Do not fully compute any inverses.) Justify your answers.
(a) $\left[\begin{array}{rr}5 & 7 \\ -3 & -6\end{array}\right]$
(b) $\left[\begin{array}{rr}-4 & 6 \\ 6 & -9\end{array}\right]$
(d) $\left[\begin{array}{rrrr}-1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0\end{array}\right]$
(e) $\left[\begin{array}{llll}1 & 3 & 7 & 8 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 8 & 8 \\ 0 & 0 & 0 & 3\end{array}\right]$
