Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [1.8. $\{13-16\}]$ Use a rectangular coordinate system to plot $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$ and their images under the given transformation T. (Make a separate sketch for each.) Describe geometrically what T does to each vector in \mathbb{R}^{2}.
(a) $T(\mathbf{x})=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(c) $T(\mathbf{x})=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(b) $T(\mathbf{x})=\left[\begin{array}{rr}0.5 & 0 \\ 0 & 0.5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(d) $T(\mathbf{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
2. [1.8.17] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{u}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ to $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and maps $\mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ to $\left[\begin{array}{r}-1 \\ 3\end{array}\right]$. Use the fact that T is linear to find the images under T of $3 \mathbf{u}, 2 \mathbf{v}$, and $3 \mathbf{u}+2 \mathbf{v}$.
3. [1.8.32] Suppose vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Suppose $T\left(\mathbf{v}_{\mathbf{i}}\right)=\mathbf{0}$ for $1 \leq i \leq p$. Show that T is the zero transformation (i.e. $T(\mathbf{x})=\mathbf{0}$ for each $\left.\mathbf{x} \in \mathbb{R}^{n}\right)$.
4. [1.8. $\{40,41\}]$ Show that the following transformations are not linear.
(a) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \mapsto\left[\begin{array}{r}4 x_{1}-2 x_{2} \\ 3\left|x_{2}\right|\end{array}\right]$.
(b) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \mapsto\left[\begin{array}{r}2 x_{1}-3 x_{2} \\ x_{1}+4 \\ 5 x_{2}\end{array}\right]$.
5. [1.9] True/False. Justify your answer.
(a) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors about the origin through an angle ϕ, then T is a linear transformation.
(c) The columns of the standard matrix for a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} are the images of the columns of the $n \times n$ identity matrix.
(d) When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
(e) Not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a matrix transformation.
(f) Note: problems (f) and (g) have been moved to HW7.
