Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

- 1. $[1.8.\{13\text{-}16\}]$ Use a rectangular coordinate system to plot $\mathbf{u} = \begin{bmatrix} 5\\2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2\\4 \end{bmatrix}$ and their images under the given transformation T. (Make a separate sketch for each.) Describe geometrically what T does to each vector in \mathbb{R}^2 .
 - (a) $T(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (b) $T(\mathbf{x}) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (c) $T(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- 2. [1.8.17] Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 5\\2 \end{bmatrix}$ to $\begin{bmatrix} 2\\1 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 1\\3 \end{bmatrix}$ to $\begin{bmatrix} -1\\3 \end{bmatrix}$. Use the fact that T is linear to find the images under T of $3\mathbf{u}$, $2\mathbf{v}$, and $3\mathbf{u} + 2\mathbf{v}$.
- 3. [1.8.32] Suppose vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span \mathbb{R}^n , and let $T \colon \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Suppose $T(\mathbf{v}_i) = \mathbf{0}$ for $1 \leq i \leq p$. Show that T is the zero transformation (i.e. $T(\mathbf{x}) = \mathbf{0}$ for each $\mathbf{x} \in \mathbb{R}^n$).
- 4. [1.8.{40,41}] Show that the following transformations are not linear.

(a)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 4x_1 - 2x_2 \\ 3|x_2| \end{bmatrix}$$
. (b) $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 2x_1 - 3x_2 \\ x_1 + 4 \\ 5x_2 \end{bmatrix}$

- 5. [1.9] True/False. Justify your answer.
 - (a) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
 - (b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin through an angle ϕ , then T is a linear transformation.
 - (c) The columns of the standard matrix for a linear transformation from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix.
 - (d) When two linear transformations are performed one after another, the combined effect may not always be a linear transformation.
 - (e) Not every linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix transformation.
 - (f) Note: problems (f) and (g) have been moved to HW7.