Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [1.6.6] Balance the following chemical reaction.

$$
\mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaNO}_{3}
$$

2. [1.7. $\{1,3,4\}]$ Determine if the vectors are linearly independent. Justify your answer.
(a) $\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}7 \\ 2 \\ -6\end{array}\right],\left[\begin{array}{r}-2 \\ -1 \\ 6\end{array}\right]$
(b) $\left[\begin{array}{r}1 \\ -3\end{array}\right],\left[\begin{array}{r}-3 \\ 6\end{array}\right]$
(c) $\left[\begin{array}{r}-1 \\ 4\end{array}\right],\left[\begin{array}{r}-2 \\ 8\end{array}\right]$
3. [1.7. $\{9,10\}]$ For which values of h is \mathbf{v}_{3} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$? For which values of h is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent?
(a) $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 10 \\ -6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}2 \\ -7 \\ h\end{array}\right]$
(b) $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -5 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 10 \\ 6\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}2 \\ -10 \\ h\end{array}\right]$
4. True/False. Justify your answers.
(a) Two vectors are linearly dependent if and only if they lie on a line through the origin.
(b) If S is a linearly dependent set, then each vector in S is a linear combination of the other vectors in S.
(c) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
(d) If \mathbf{x} and \mathbf{y} are linearly independent but $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then $\mathbf{z} \in \operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
5. Let $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}$ be vectors, and suppose that \mathbf{v} is a vector that can be obtained as a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{n}}$ in two different ways. Prove that $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}$ are linearly dependent.
