Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work..

1. [1.4.14] Let $\mathbf{u}=\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]$ and $A=\left[\begin{array}{rrr}5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0\end{array}\right]$. Is \mathbf{u} in the subset of \mathbb{R}^{3} spanned by the columns of A ? Why or why not?
2. [1.4. $\{15,16\}]$ For the matrices A and vectors \mathbf{b} below, show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ does have a solution.
(a) $A=\left[\begin{array}{rr}2 & -1 \\ -6 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.
(b) $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
3. [1.4.42] Could a set of three vectors in \mathbb{R}^{4} span all of \mathbb{R}^{4} ? Explain. What about n vectors in \mathbb{R}^{m} when n is less than m ?
4. [1.5. $\{7,11\}]$ Given a matrix A and a vector \mathbf{b}, describe all solutions to $A \mathbf{x}=\mathbf{b}$ in parametric form.
(a) $A=\left[\begin{array}{llll}1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5\end{array}\right], \mathbf{b}=\mathbf{0}$
(b) $A=\left[\begin{array}{rrrrrr}1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \mathbf{b}=\mathbf{0}$
(c) $A=\left[\begin{array}{rrrrr}1 & 0 & 3 & 1 & -1 \\ 2 & -1 & 2 & 0 & 1 \\ -1 & 1 & 3 & 3 & 2\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-1 \\ 3 \\ 0\end{array}\right]$
5. Let A be an $(m \times n)$ matrix, let $\mathbf{v} \in \mathbb{R}^{n}$, and let c be a scalar. Prove that $A(c \mathbf{v})=c(A \mathbf{v})$.
