Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. $[1.3,\{11,12\}]$ Determine if **b** is a linear combination of $\mathbf{a_1}$, $\mathbf{a_2}$, and $\mathbf{a_3}$.

(a)
$$\mathbf{a_1} = \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}$$
, $\mathbf{a_2} = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $\mathbf{a_3} = \begin{bmatrix} 5\\ -6\\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2\\ -1\\ 6 \end{bmatrix}$.
(b) $\mathbf{a_1} = \begin{bmatrix} 1\\ -2\\ 2 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} 0\\ 5\\ 5 \end{bmatrix}$, $\mathbf{a_3} = \begin{bmatrix} 2\\ 0\\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -5\\ 11\\ -7 \end{bmatrix}$.

2. [1.3.13] Determine if **b** is a linear combination of the vectors formed from the columns of the matrix A.

$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$$

- 3. [1.3] True/False. Justify your answers.
 - (a) Another notation for the vector $\begin{bmatrix} -4\\ 3 \end{bmatrix}$ is $\begin{bmatrix} -4 & 3 \end{bmatrix}$.
 - (b) The points in the plane corresponding to $\begin{bmatrix} -2\\5 \end{bmatrix}$ and $\begin{bmatrix} -5\\2 \end{bmatrix}$ lie on a line through the origin.
 - (c) An example of a linear combination of vectors $\mathbf{v_1}$ and $\mathbf{v_2}$ is the vector $\frac{1}{2}\mathbf{v_1}$.
 - (d) The weights c_1, \ldots, c_p in a linear combination $c_1 \mathbf{v_1} + \cdots + c_p \mathbf{v_p}$ cannot all be zero.
 - (e) The set $\text{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.
- 4. Pivot columns in a matrix.
 - (a) Let $A = [\mathbf{a_1} \mathbf{a_2} \cdots \mathbf{a_p}]$ and let $B = [\mathbf{b_1} \mathbf{b_2} \cdots \mathbf{b_p}]$. Suppose that $\mathbf{a_i} = \mathbf{a_j}$ and A is row equivalent to B. Explain why it must be that $\mathbf{b_i} = \mathbf{b_j}$. (Hint: how do the *i*th and *j*th columns behave with respect to each elementary row operation?)
 - (b) Let $A = [\mathbf{a_1} \ \mathbf{a_2} \ \cdots \ \mathbf{a_p}]$. Suppose that $\mathbf{a_i} = \mathbf{a_j}$ and that i < j. Use part (a) to explain why the *j*th column of A cannot be a pivot column. (Hint: let B be the reduced echelon form of A.)
- 5. [1.4.9] Write the system first as a vector equation and then as a matrix equation.

6. [1.4.11] Given A and b below, write augmented matrix corresponding to the matrix equation $A\mathbf{x} = \mathbf{b}$ and solve for \mathbf{x} .

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} -2 \\ 2 \\ 9 \end{bmatrix}$$