Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [1.3. $\{11,12\}]$ Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
(a) $\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}5 \\ -6 \\ 8\end{array}\right], \mathbf{b}=\left[\begin{array}{r}2 \\ -1 \\ 6\end{array}\right]$.
(b) $\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right], \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right], \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-5 \\ 11 \\ -7\end{array}\right]$.
2. [1.3.13] Determine if \mathbf{b} is a linear combination of the vectors formed from the columns of the matrix A.

$$
A=\left[\begin{array}{rrr}
1 & -4 & 2 \\
0 & 3 & 5 \\
-2 & 8 & -4
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{r}
3 \\
-7 \\
-3
\end{array}\right]
$$

3. [1.3] True/False. Justify your answers.
(a) Another notation for the vector $\left[\begin{array}{r}-4 \\ 3\end{array}\right]$ is $\left[\begin{array}{ll}-4 & 3\end{array}\right]$.
(b) The points in the plane corresponding to $\left[\begin{array}{r}-2 \\ 5\end{array}\right]$ and $\left[\begin{array}{r}-5 \\ 2\end{array}\right]$ lie on a line through the origin.
(c) An example of a linear combination of vectors $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ is the vector $\frac{1}{2} \mathbf{v}_{\mathbf{1}}$.
(d) The weights c_{1}, \ldots, c_{p} in a linear combination $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}$ cannot all be zero.
(e) The set $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.
4. Pivot columns in a matrix.
(a) Let $A=\left[\begin{array}{llll}\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{\mathbf{p}}\end{array}\right]$ and let $B=\left[\begin{array}{llll}\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}} & \cdots & \mathbf{b}_{\mathbf{p}}\end{array}\right]$. Suppose that $\mathbf{a}_{\mathbf{i}}=\mathbf{a}_{\mathbf{j}}$ and A is row equivalent to B. Explain why it must be that $\mathbf{b}_{\mathbf{i}}=\mathbf{b}_{\mathbf{j}}$. (Hint: how do the i th and j th columns behave with respect to each elementary row operation?)
(b) Let $A=\left[\begin{array}{llll}\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{\mathbf{2}} & \cdots & \mathbf{a}_{\mathbf{p}}\end{array}\right]$. Suppose that $\mathbf{a}_{\mathbf{i}}=\mathbf{a}_{\mathbf{j}}$ and that $i<j$. Use part (a) to explain why the j th column of A cannot be a pivot column. (Hint: let B be the reduced echelon form of A.)
5. [1.4.9] Write the system first as a vector equation and then as a matrix equation.

$$
\begin{array}{r}
3 x_{1}+x_{2}-5 x_{3}=9 \\
x_{2}+4 x_{3}=0
\end{array}
$$

6. [1.4.11] Given A and \mathbf{b} below, write augmented matrix corresponding to the matrix equation $A \mathbf{x}=\mathbf{b}$ and solve for \mathbf{x}.

$$
A=\left[\begin{array}{rrr}
1 & 2 & 4 \\
0 & 1 & 5 \\
-2 & -4 & -3
\end{array}\right] \quad B=\left[\begin{array}{r}
-2 \\
2 \\
9
\end{array}\right]
$$

