Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work..

1. [1.1.38] Suppose a, b, c, and d are constants such that a is nonzero and the system below is consistent for all possible values of f and g. What can you say about the numbers a, b, c, and d ? Justify your answer.

$$
\begin{aligned}
& a x_{1}+b x_{2}=f \\
& c x_{1}+d x_{2}=g
\end{aligned}
$$

2. [1.2. $\{7-11\}]$ Find the general solutions of the systems whose augmented matrices are given below.
(a) $\left[\begin{array}{llll}1 & 3 & 4 & 7 \\ 3 & 9 & 7 & 6\end{array}\right]$
(b) $\left[\begin{array}{rrrr}1 & 4 & 0 & 7 \\ 2 & 7 & 0 & 11\end{array}\right]$
(c) $\left[\begin{array}{rrrr}0 & 1 & -6 & 5 \\ 1 & -2 & 7 & -4\end{array}\right]$
(e) $\left[\begin{array}{rrrr}3 & -4 & 2 & 0 \\ -9 & 12 & -6 & 0 \\ -6 & 8 & -4 & 0\end{array}\right]$
(f) $\left[\begin{array}{rrrrr}1 & -7 & 0 & 6 & 5 \\ 0 & 0 & 1 & -2 & -3 \\ -1 & 7 & -4 & 2 & 7\end{array}\right]$
(d) $\left[\begin{array}{llll}1 & -2 & -1 & 3 \\ 3 & -6 & -2 & 2\end{array}\right]$
3. Determine a cubic polynomial $f(t)=a+b t+c t^{2}+d t^{3}$ such that $f(-1)=-1, f(0)=0$, $f(1)=1$, and $f^{\prime}(1)=0$. Hint: use the four given pieces of information about f to write four linear equations in the variables a, b, c, and d.
