Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

- 1. A non-zero vector \mathbf{v} is a generalized eigenvector of A associated with eigenvalue λ if \mathbf{v} is in the null space of $(A - \lambda I)^k$ for some positive integer k. Prove that if \mathbf{v} is a generalized eigenvector of A associated with λ and $A = P^{-1}BP$, then $P\mathbf{v}$ is a generalized eigenvector of B.
- 2. [5.9.{3,13}] On any given day, a student is either healthy or ill. Of the students who are healthy today, 95% will be healthy tomorrow. Of the students who are ill today, 55% will still be ill tomorrow.
 - (a) What is the stochastic matrix P that models this situation?
 - (b) Suppose 20% of the students are ill on Monday. What fraction or percentage of the students are likely to be ill on Tuesday? On Wednesday?
 - (c) If a student is well today, what is the probability that he or she will be well two days from now?
 - (d) Find the steady-state vector for P.
 - (e) What is the probability that after many days a specific student is ill? Does it matter if that person is ill today?
- 3. [5.9.{15-20}] True/False. In the following, P is an $n\times n$ stochastic matrix. Justify each answer.
 - (a) The steady state vector is an eigenvector of P.
 - (b) Every eigenvector of P is a steady state vector.
 - (c) The all ones vector is an eigenvector of P^T .
 - (d) All stochastic matrices are regular.