Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [5.3.4] Given the factorization $A = PDP^{-1}$ below, find a formula for A^k where k is a non-negative integer.

[-6]	8]	_	1	2	2	0]	[-1	2]
$\left[\begin{array}{c}-6\\-4\end{array}\right]$	6	=	1	1	0	-2	[1	-1

2. [5.3.{7-20}] Diagonalize the following matrices if possible. That is, for each diagonalizable matrix A below, construct an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. (There is no need to compute P^{-1} explicitly.) For each matrix A below that is not diagonalizable, explain why not.

(a)	$\left[\begin{array}{rrr}1&0\\6&-1\end{array}\right]$	(d)	$\begin{bmatrix} 4\\2\\0 \end{bmatrix}$	$0 \\ 3$	$\frac{2}{4}$]	
	$\left[\begin{array}{rrr} 3 & -1 \\ 1 & 5 \end{array}\right]$						1
(c)	$\left[\begin{array}{rrrr} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{array}\right]$	(e)	$\left[\begin{array}{c}2\\0\\0\\1\end{array}\right]$	$2 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ 2\end{array}$	

- 3. [5.3.{21-28}] True/False. In the following, A, P, and D are $(n \times n)$ matrices. Justify your answers.
 - (a) A is diagonalizable if $A = PDP^{-1}$ for some matrix D and some invertible matrix P.
 - (b) If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
 - (c) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
 - (d) If A is diagonalizable, then A is invertible.
 - (e) A is diagonalizable if A has n eigenvectors.
 - (f) If A is diagonalizable, then A has n distinct eigenvalues.
 - (g) If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
 - (h) If A is invertible, then A is diagonalizable.
- 4. [5.3.31] A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Justify your answer.
- 5. Let $\mathbf{v}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2\\7 \end{bmatrix}$, and let λ_1 and λ_2 be scalars. Construct a (2×2) -matrix A having eigenvectors \mathbf{v}_1 and \mathbf{v}_2 with respective eigenvalues λ_1 and λ_2 . (Here, the entries of A will depend on λ_1 and λ_2 .)
- 6. [5.8.8] Let $A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$ and let $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Execute the power method to generate \mathbf{x}_k and μ_k for $k = 0, \dots, 4$, keeping 3 decimal places. What is the estimated eigenvalue/eigenvector pair?