Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [5.3.4] Given the factorization $A=P D P^{-1}$ below, find a formula for A^{k} where k is a nonnegative integer.

$$
\left[\begin{array}{ll}
-6 & 8 \\
-4 & 6
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{rr}
-1 & 2 \\
1 & -1
\end{array}\right]
$$

2. [5.3. $\{7-20\}$] Diagonalize the following matrices if possible. That is, for each diagonalizable matrix A below, construct an invertible matrix P and a diagonal matrix D such that $A=$ $P D P^{-1}$. (There is no need to compute P^{-1} explicitly.) For each matrix A below that is not diagonalizable, explain why not.
(a) $\left[\begin{array}{rr}1 & 0 \\ 6 & -1\end{array}\right]$
(b) $\left[\begin{array}{rr}3 & -1 \\ 1 & 5\end{array}\right]$
(d) $\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 3 & 4 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{rrr}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$
(e) $\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right]$
3. [5.3.\{21-28\}] True/False. In the following, A, P, and D are $(n \times n)$ matrices. Justify your answers.
(a) A is diagonalizable if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
(b) If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(c) A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
(d) If A is diagonalizable, then A is invertible.
(e) A is diagonalizable if A has n eigenvectors.
(f) If A is diagonalizable, then A has n distinct eigenvalues.
(g) If $A P=P D$, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
(h) If A is invertible, then A is diagonalizable.
4. [5.3.31] A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Justify your answer.
5. Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 7\end{array}\right]$, and let λ_{1} and λ_{2} be scalars. Construct a (2×2)-matrix A having eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} with respective eigenvalues λ_{1} and λ_{2}. (Here, the entries of A will depend on λ_{1} and λ_{2}.)
6. [5.8.8] Let $A=\left[\begin{array}{cc}2 & 1 \\ 4 & 5\end{array}\right]$ and let $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Execute the power method to generate \mathbf{x}_{k} and μ_{k} for $k=0, \ldots, 4$, keeping 3 decimal places. What is the estimated eigenvalue/eigenvector pair?
