Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [5.1. $\{9-16\}]$ Find a basis for the eigenspace corresponding to each listed eigenvalue.
(a) $\left[\begin{array}{ll}5 & 0 \\ 2 & 1\end{array}\right], \lambda=1,5$
(c) $\left[\begin{array}{rrr}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right], \lambda=1,2,3$
(b) $\left[\begin{array}{rr}4 & -2 \\ -3 & 9\end{array}\right], \lambda=10$
(d) $\left[\begin{array}{rrr}4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9\end{array}\right], \lambda=3$
2. True/False. Justify your answers. In the following, A is an $(n \times n)$-matrix.
(a) If $A \mathbf{x}=\lambda \mathbf{x}$ for some vector \mathbf{x}, then λ is an eigenvalue of A.
(b) The matrix A is invertible if and only if 0 is an eigenvalue of A.
(c) To find the eigenvalues of A, reduce A to echelon form.
(d) If \mathbf{v} is an eigenvector with eigenvalue 2 , then $2 \mathbf{v}$ is an eigenvector with eigenvalue 4 .
(e) An eigenspace of A is a null space of a certain matrix.
3. [5.1.33] Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1}.
4. [5.2. $\{1-14\}]$ Find the characteristic polynomial and eigenvalues of the matrices below.
(a) $\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0\end{array}\right]$
(b) $\left[\begin{array}{rr}4 & -3 \\ -4 & 2\end{array}\right]$
(d) $\left[\begin{array}{rrr}6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3\end{array}\right]$
5. [5.2.18] Find h in the matrix A below such that the eigenspace for $\lambda=5$ is two-dimensional.

$$
\left[\begin{array}{rrrr}
5 & -2 & 6 & -1 \\
0 & 3 & h & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6. [5.2.20] Use a property of determinants to show that A and A^{T} have the same characteristic polynomial.
