Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work.

1. [5.1.{9-16}] Find a basis for the eigenspace corresponding to each listed eigenvalue.

(a) $\begin{bmatrix} 5 & 0\\ 2 & 1 \end{bmatrix}$, $\lambda = 1, 5$	(c)	$\begin{bmatrix} 4\\ -2\\ -2 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \lambda = 1, 2, 3$
(b) $\begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}$, $\lambda = 10$	(d)	$\left[\begin{array}{c} 4\\ -1\\ 2 \end{array}\right]$	$2 \\ 1 \\ 4$	$\begin{bmatrix} 3\\ -3\\ 9 \end{bmatrix}, \ \lambda = 3$

- 2. True/False. Justify your answers. In the following, A is an $(n \times n)$ -matrix.
 - (a) If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} , then λ is an eigenvalue of A.
 - (b) The matrix A is invertible if and only if 0 is an eigenvalue of A.
 - (c) To find the eigenvalues of A, reduce A to echelon form.
 - (d) If \mathbf{v} is an eigenvector with eigenvalue 2, then $2\mathbf{v}$ is an eigenvector with eigenvalue 4.
 - (e) An eigenspace of A is a null space of a certain matrix.
- 3. [5.1.33] Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} .
- 4. [5.2.{1-14}] Find the characteristic polynomial and eigenvalues of the matrices below.

(a)
$$\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

(b) $\begin{bmatrix} 4 & -3 \\ -4 & 2 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0 \end{bmatrix}$
(c) $\begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix}$

5. [5.2.18] Find h in the matrix A below such that the eigenspace for $\lambda = 5$ is two-dimensional.

6. [5.2.20] Use a property of determinants to show that A and A^T have the same characteristic polynomial.