Directions: You may work to solve these problems in groups, but all written work must be your own. Show all work; no credit for solutions without work..

1. Solve the following systems of linear equations. Verify that your solution is correct by substituting values back into their original equations.
(a)

$$
\begin{array}{rr}
x_{1}-x_{2} & =10 \\
3 x_{1}+2 x_{2} & =-5
\end{array}
$$

(b)

$$
\begin{aligned}
x_{1}+x_{2} & -2 x_{3}
\end{aligned}=0
$$

2. [1.1. $\{19,20\}$] Determine if the system is consistent. Do not fully solve.
(a)

$$
\begin{aligned}
& x_{1} \quad{ }^{2}+3 x_{3}-3 x_{4}=32 \\
& -2 x_{2}+3 x_{3}+2 x_{4}=1 \\
& 3 x_{1} \quad+7 x_{4}=-5
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{1}-2 x_{4} & =-3 \\
2 x_{2}+2 x_{3} & =0 \\
x_{3}+3 x_{4} & =1 \\
-2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5
\end{aligned}
$$

3. An augmented matrix with unknown entries.
(a) Find an equation involving a, b, and c that makes the following augmented matrix correspond to a consistent system.

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 5 \\
a & b & c
\end{array}\right]
$$

(b) Let \mathcal{L} be the set of lines $a x_{1}+b x_{2}=c$ such that a, b, and c make the augmented matrix in part (a) consistent. Give a geometric description of \mathcal{L}.

