Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Prove that p is the smallest prime that divides $(p-1)!+1$.
2. [NT 5-2.4] Let $k=\phi(m)$. Prove that if r_{1}, \ldots, r_{k} is a reduced residue system modulo m and m is odd, then $r_{1}+r_{2}+\cdots+r_{k} \equiv 0(\bmod m)$.
3. [NT 5-3.4]
(a) Prove that for each n, there are n consecutive integers, each of which is divisible by a perfect square larger than 1 .
(b) Using your proof above, explicitly find 3 consecutive integers, each of which is divisible by a perfect square larger than 1 . In your answer, give the integers as well as the corresponding perfect squares.
4. [NT 5-4.1] Find the set of solutions to the following system of congruences:

$$
\begin{array}{ll}
2 x \equiv 1 & (\bmod 5) \\
3 x \equiv 9 & (\bmod 6) \\
4 x \equiv 1 & (\bmod 7) \\
5 x \equiv 9 & (\bmod 11)
\end{array}
$$

5. Let $A=\left\{a^{2}-b^{2}: a, b \in \mathbb{Z}\right\}$. Give a simple characterization of A (with proof of correctness).
6. Prove that there are infinitely many integers n such that $n \mid 2^{n}+1$. Hint: first, find the three smallest such integers.
7. [Challenge] Prove that if $n \geq 2$, then the sum $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is not an integer.
