Directions: Solve the following problems; challenge problems are optional for extra credit. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. [NT 2-3.1] Find the general solution (if solutions exist) of each of the following linear Diophantine equations:
(a) $15 x+51 y=41$
(b) $23 x+29 y=25$
(c) $121 x-88 y=572$
2. Let a_{1}, \ldots, a_{n}, c be integer constants and let x_{1}, \ldots, x_{n} be integer variables. Give a simple condition that characterizes when the Diophantine equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=c$ has integral solutions. Prove your characterization is correct.
3. Binomial Coefficients and Parity.
(a) [NT 3-1.3] Using the definition of $\binom{n}{r}$, show combinatorially that $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$. (To show an identity combinatorially, find an appropriate set A and show that both sides of the identity count the elements in A.)
(b) Prove that if n is even and r is odd, then $\binom{n}{r}$ is even.
4. Prove that n^{5} and n have the same last digit.
5. Prove that if a and b are positive integers, then it is not possible for both $a+b^{2}$ and $a^{2}+b$ to be square numbers (i.e. of the form k^{2} for some integer k). Hint: after a^{2}, what is the next largest square?
6. Prove that if p is an odd prime, then there are infinitely many integers n such that $p \mid n 2^{n}+1$.
7. Prove that if n is an integer and $n \geq 2$, then $n^{4}+4^{n}$ is not prime.
8. [Challenge] Fermat's "medium" theorem?
(a) Let p and q be distinct primes. Count the number of cyclic lists of length $p q$ with entries in a set of size n. (For example, for $p=2, q=3$, and $n=2$, we are counting cyclic lists of length 6 with entries in, say, \{red, blue\}; there are 14 of these.)
(b) Use part (a) to show that if p and q are distinct primes and n is a positive integer, then $p q$ divides $n^{p q}-n^{p}-n^{q}+n$.
