Directions: Solve the following problems. Your solutions should be electronically typeset and all written work should be your own.

1. Sums of squares.
(a) [NT 1-1.1] Prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(b) Determine the set A of positive integers n such that n divides the sum $1^{2}+2^{2}+\cdots+n^{2}$. Note: your answer should give a simple description of A and a proof that n divides $1^{2}+\cdots+n^{2}$ if and only if $n \in A$.
2. Prove that for each non-negative integer n, we have that 169 divides $3^{3 n+3}-26 n-27$.
3. Divisibility and exponents.
(a) Prove that if a and n are integers with $a \geq 3$ and $n \geq 2$, then $a^{n}-1$ is not prime.
(b) Prove that if $2^{n}-1$ is prime, then n is prime.
4. Give the base 6 representation for 42,201 .
5. Let $d=\operatorname{gcd}(63119,38227)$. Find d and obtain integers p and q such that $d=63119 p+38227 q$. Show your work.
6. [Challenge] Let $A_{n}=\{(x, y): 1 \leq x \leq n, 1 \leq y \leq n$, and $\operatorname{gcd}(x, y)=1\}$. Note that A_{n} contains all points (x, y) in the $(n \times n)$-grid with corners $(1,1)$ and (n, n) such that the line segment joining $(0,0)$ and (x, y) contains no other integer lattice points. The first few such sets are as follows:

$$
\begin{aligned}
& A_{1}=\{(1,1)\} \\
& A_{2}=\{(1,1),(2,1),(1,2)\} \\
& A_{3}=\{(1,1),(1,2),(1,3),(2,3),(2,1),(3,1),(3,2)\}
\end{aligned}
$$

Let $f(n)=\left|A_{n}\right|$. Note that $f(1)=1, f(2)=3, f(3)=7$, and $f(4)=11$. Prove that there is a positive constant C such that $f(n) \geq C n^{2}$.

