Name: Solutions

Directions: Show all work. Answers without work generally do not earn points. Unless stated otherwise, <u>answers may be left in terms of factorials and binomial coefficients</u>. Your answers should not involve sums with more than a few terms.

- 1. [3 parts, 6 points each] Let $\Sigma = \{a, b\}$. Construct DFAs for the following languages.
 - (a) $\{w \in \Sigma^* : w \text{ has length at least } 2\}$

(b) $\{w \in \Sigma^* : w = a^n bx \text{ for some odd integer } n \text{ and some string } x\}$

(c) $\{w \in \Sigma^*: w \text{ does not contain the same symbol three times consecutively}\}$

2. [1 point] Fill in the blanks: In the formal definition of a DFA, the transition function δ has type $\delta: \ \underline{\bigcirc} \times \underline{\searrow} \rightarrow \underline{\bigcirc} \underline{\bigcirc}$.

3. Let $\Sigma = \{a, b\}$. The DFAs M_1 and M_2 are pictured below.

(a) [6 points] Give simple, English descriptions of the languages computed by M_1 and M_2 .

 $L(M_1)$ is the set of strings with two consecutive a's $L(M_2)$ is the set of strings with a pair of non-consecutive a's.

(b) [10 points] Construct a DFA that accepts a string w if and only if both M_1 and M_2 accept w. (Hint: since many states would be unreachable in the product construction, it is more efficient to find successor states dynamically, only for those states that are

- 4. [6 parts, 3 points each] True/False. For each statement below, decide if the statement is true or false, and justify your answer.
 - (a) The language A is regular if and only if A is computed by some DFA.

(b) The language A is regular if and only if A is computed by some NFA.

(c) If A is the language computed by an NFA N, then we obtain an NFA for the complement language \overline{A} by inverting the accepting and rejecting states in N.

FALSE let
$$Z = \{a, b\}$$
, and define $N_1 : \rightarrow \bigcirc || N_2 \Rightarrow \bigcirc$
we have $L(N_1) = \{x\}$ and $L(N_2) = \emptyset$ which are not
complements of one another.

(d) Let $\Sigma = \{a, b\}$. There is a DFA that computes the language $\{a^n b^n \colon n \ge 0\}$.

(e) If A and B are regular languages, then A - B is also a regular language.

(f) Let $\Sigma = \{a, b\}$. There is a DFA that computes the language

 $\{w \in \Sigma^* \colon w = xy \text{ for some strings } x \text{ and } y \text{ with } |x| = |y|\}.$

(Recall that if x is a string in Σ^* , then |x| denotes the length of x.)

True. This language is also just
$$\{w \in \Sigma^* : |w| \text{ is even}\}$$

and is computed by $\rightarrow \bigcirc a, b$.

5. Let N be the NFA pictured below.

(a) [6 points] Complete the transition table below.

	λ^*	$\lambda^* a$	$\lambda^* a \lambda^*$	$\lambda^* b$	$\lambda^*b\lambda^*$
1	l	12	124	3	34
2	24	2	24	14	14
3	34	34	34	١	1
4	4	Ø	Ø		1

(b) [10 points] Convert N to a DFA.

- 6. [2 parts, 5 points each] Let $\Sigma = \{0, 1, 2\}$. Construct NFAs for the following languages with at most the prescribed number of states.
 - (a) A 5-state NFA for $\{w \in \Sigma^* : |w| \ge 2 \text{ and starts and ends with the same symbol}\}$

(b) A 4-state NFA for $\{w \in \Sigma^* : w \text{ does not contain all 3 input symbols}\}$

- 7. [5 points] Let $\Sigma = \{a, b, c\}$ and let
 - $A = \{w \in \Sigma^* \colon \#a(w) \text{ is even}\}$ $B = \{w \in \Sigma^* \colon \#b(w) \text{ is even}\}$ $C = \{w \in \Sigma^* \colon \#c(w) \text{ is even}\}.$

Construct an NFA for the language ABC, where $ABC = \{xyz \in \Sigma^* : x \in A, y \in B, \text{ and } z \in C\}$. (Do not convert to a DFA.)

8. [4 points] How many edges are there in K_{50} , the complete graph on 50 vertices?

$$\binom{50}{2}$$
 or $\frac{50.49}{2} = 25.49 = 1225$

9. [3 parts, 4 points each] Let G be the following graph with 9 vertices.

(a) What are the degrees of the vertices in G?

Vertices in {v1, ..., v8 } have degree 3. The vertex vq has degree 8.

(b) How many times does C_3 appear as a subgraph of G?

(c) In total, how many cycles does G contain?

Scratch Paper