Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [4 parts, 1 point each] Let $A=\{(2,4),\{4,2\}, 3\}, B=\{3,(4,2)\}$, and $C=\{1,2,3\} \times\{3,4\}$.
(a) Determine the sizes of A, B, and C.
(b) Find $A \cap B$.
(c) Find B^{2}.
(d) Find C^{0}.
2. [2 points] Is it true or false that for all sets A, B, C, we have that $(A \times B) \times C=A \times(B \times C)$? If true, then explain why this is true, and if false, then give an example of sets A, B, C where $(A \times B) \times C \neq A \times(B \times C)$.
3. [2 points] Is the set \mathbb{N}^{5} countable or not? Justify your answer.
4. [2 points] Let A be the set whose members are the subsets of the positive integers. For example, the following sets are members of $A:\{1,3,5,7, \ldots\},\{n: n$ is prime $\},\{1,2,3,4,5\}$, \varnothing, and $\{1,4,9,25,36, \ldots\}$. Let $S_{1}, S_{2}, S_{3}, \ldots$ be a list of members of A. Adapt Cantor's diagonalization argument to construct a set D which does not appear on the list.
