Name: Solutions
Directions: Show all work. No credit for answers without work. You may leave your answers in terms of factorials and, when necessary, sums with a few terms.

(a) with no additional restrictions?
$T: 3$ Symbols: 10.
R: 1
I: 1
A: 1

H: 1
L: 1
$E: 2$
(b) that start with at least two T's? (For example, both 'TTRIAHLETE' and 'TTTRIAHLEE' count.)

$$
\begin{aligned}
& \text { \# such avrangemenent }=\text { \# arrangements of TRIAHLEE } \\
& \text { TTRAHEIELT } \longleftrightarrow \text { RAHEIELT } \text { R symbols, 2E's }_{2!}^{\text {So } \# \text { is } \frac{8!}{20,160}}
\end{aligned}
$$

(c) that have the 'A' between the two 'E's (not necessarily consecutively)? (For example, both 'TRIETHLATE' and 'TRIEAETHLT' count.)
\# such arrangements = \#arrangemants of TRIZTHLZTZ 10 symbols
$3 \mathrm{Z's}$
3 T 's TRIETHLATE $\leftrightarrow T R I E T H L Z T Z$

$$
\text { So } \# \text { is } \frac{10!}{(3!)(3!)}=100,800
$$

2. [2 points] Recall that each step in a lattice path increases one of the coordinates by 1. Out of all lattice paths from $(0,0)$ to $(6,6)$, determine the fraction that pass through the point $(3,4)$.

$$
\text { Total \# paths }=\text { \#arrangenents of } \frac{R \cdots R}{6} \frac{u \cdots-u}{6}=\frac{(12)!}{(6!)(6!)}=924
$$

Tonal \#paths $(0,0)$ to $(3,4)=$ \#arrangenents of RRRUuuU $=\frac{7!}{(3!)(4!)}=35$ Total \# paths $(3,4)$ to $(6,6)=$ \# arraagenath of $\operatorname{RRRUU}=\frac{5!}{3!\cdot 2!}=10$ $\begin{gathered}\text { Total \# paths }(0,0) \text { to }(6,6) \\ \text { Through }(3,4)\end{gathered}=\frac{7!\cdot 5!}{(3!) \cdot(4)!\cdot(3)!\cdot(2)!}=35 \cdot 10=350$
So fraction through $(3,4)$ is $\frac{350}{924}$ or $\frac{25}{66}$, approx 37.88%
3. [2 points] Suppose that $n \geq 2$. How many ways are there to arrange the integers in $\{1, \ldots, n\}$ so that 1 and n are not next to each other? For example, if $n=5$, then 23541 counts but 23514 does not.

Count the complement.
Total \# arrangements $=P(n, n)=n$!
Total \# arrangements with 1 at n consecutive:
$n-1$ distinct symbol
(1) Arrange

(2) Replace * with $1, n$ or $n, 1 \quad n_{2}=2$

$$
2(n-1)!
$$

So botel \# is $n!-2(n-1)!=n \cdot(n-1)!-2(n-1)!=(n-2)(n-1)!$

