Name: Solutions

Directions: Show all work. No credit for answers without work.

1. [2 parts, 2 points each] Decide whether the following pairs of graphs are isomorphic. If they are isomorphic, give the function that establishes the isomorphism. If not, explain why.

 2. [2 points] Let G be a planar embedding of a connected graph with 95 vertices and 158 edges. Including the infinite region, how many regions are there?

By Euler's Formula,
$$n - a + r = 2$$

 $95 - 158 + r = 2$
 $r = 2 + 158 - 95 = 160 - 95 = 65$

- 3. [2 parts, 2 points each] A graph G is self-complementary if G is isomorphic to its complement \overline{G} .
 - (a) How many edges are there in an *n*-vertex self-complementary graph?

Since G has a vertices, we have that
$$|E(G)| + |E(\overline{G})| = \binom{n}{2}$$
.
Since $G \cong \overline{G}_{j}$ we have $|E(\overline{G})| = |E(G)|$.
Therefore $Z|E(G)| = \binom{n}{2}$ and so $|E(G)| = \frac{1}{2\binom{n}{2}} = \frac{n(n-1)}{4}$.

(b) Give an example of a 4-vertex self-complementary graph.

By part (a), such a graph has
$$\frac{4(3)}{4}$$
 or 3 edges. Up to
isomorphism, there are 3 distinct 4-vertex 3-edge graphs:
"Claw" $K_3 + K_1$ "path"
of there, only the path is self - complementary:
G