Name: Solutions
Directions: Show all work. No credit for answers without work.

1. [2 parts, 2 points each] Decide whether the following pairs of graphs are isomorphic. If they are isomorphic, give the function that establishes the isomorphism. If not, explain why.
(a)

No, these graphs are not isomorphic. On the left, the two vertices of degree 3, band, are adjacent. On the right, the two vertices of degree 3, 1 ad 4 , are not adjacent.
(b)

These graphs are isomorphic. There are 6 is omorphisms. One of them is given by

Left	a	b	c	d	e	f	g
Right	1	2	7	4	3	6	5

The other are given by

$$
\begin{gathered}
g \longleftrightarrow 5 \\
\{(a, d),(b, e),(c, f)\} \longleftrightarrow\{(1,4),(2,3),(7,6)\}
\end{gathered}
$$

2. [$\mathbf{2}$ points] Let G be a planar embedding of a connected graph with 95 vertices and 158 edges. Including the infinite region, how many regions are there?

By Euler's Formula, $n-a+r=2$

$$
95-158+r=2
$$

$$
r=2+158-95=160-95=65
$$

So there are 65 regions.
3. [2 parts, 2 points each] A graph G is self-complementary if G is isomorphic to its complemont \bar{G}.
(a) How many edges are there in an n-vertex self-complementary graph?

Since G has n vertices, we have that $|E(G)|+|E(\bar{G})|=\binom{n}{2}$.

Since $G \cong \bar{G}$, we have $|E(\bar{G})|=|E(G)|$.
Therefore $2|E(G)|=\binom{n}{2}$ as so $|E(G)|=\frac{1}{2}\left(\begin{array}{l}n \\ 2\end{array}\right]=\frac{n(n-1)}{4}$.
(b) Give an example of a 4-vertex self-complementary graph.

By part (a), such a graph has $\frac{4(3)}{4}$ or 3 edges. Up to
isomorphism, there are 3 distinct 4-vertex 3-e)ye graphs:

