Name: Solutions
Directions: Show all work. No credit for answers without work.

1. Let $\Sigma=\{a, b, c\}$. We define the following languages.

$$
\begin{aligned}
& A=\left\{w \in \Sigma^{*}: w \text { ends with a b }\right\} \\
& B=\left\{w \in \Sigma^{*}: \text { every } a \text { in } w \text { appears before every } c\right\}
\end{aligned}
$$

(a) [2 points] Construct a DFA for A.

(b) [2 points] Construct a DFA for B

(c) [3 points] Construct a DFA for $A \triangle B$. (Recall that $A \triangle B=(A-B) \cup(B-A)$.) Use product construction:

Noble: this is the minimum DFA for $A \triangle B$.
2. [3 points] Let $\Sigma=\{0,1\}$ and let $A=\left\{w \in \Sigma^{*}\right.$: the number of zeros and ones in w is not equal $\}$. Show that A is not a regular language. (Your argument should mostly use English sentences.)
Suppose for a contradiction that M is a DFA with $L(M)=A$, and let n be the number of states in M.

Consider the words $w_{0}, w_{1}, \ldots, w_{n}$, where $w_{i}=0^{i}$. Since This is a list of $n+1$ words an M has jut n states, There exist i and j such that $i<j$ but M an ω_{i} and M an w_{j} end in the same state, It follows that M on $\omega_{i} 1^{i}$ and M on $w_{j} 1^{i}$ also end in the same state.
So M either accepts both $\omega_{i} \perp^{i}$ and $\omega_{j} 1^{i}$, or M rejects both of These words. Bot $w_{i} 1^{i}=0^{i} 1^{i} \& A$ and $w_{j} 1^{i}=0^{j} 1^{i} \in A$, ant so $L(M) \neq A$, a contradiction. Therefore A is not regular.

