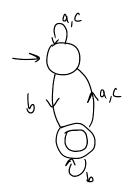
Directions: Show all work. No credit for answers without work.

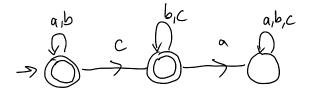
1. Let $\Sigma = \{a, b, c\}$. We define the following languages.

 $A = \{ w \in \Sigma^* : w \text{ ends with a b} \}$ $B = \{ w \in \Sigma^* : \text{ every } a \text{ in } w \text{ appears before every } c \}$

(a) **[2 points]** Construct a DFA for A.



(b) [2 points] Construct a DFA for B



(c) [3 points] Construct a DFA for $A \triangle B$. (Recall that $A \triangle B = (A - B) \cup (B - A)$.) Use poduot construction: b, a, b, c a, b, c a, c b, c a, b, c a, c b, c a, b, c a, c b, c b, c a, c b, cb, 2. [3 points] Let $\Sigma = \{0, 1\}$ and let $A = \{w \in \Sigma^* : \text{the number of zeros and ones in } w \text{ is not equal}\}.$ Show that A is not a regular language. (Your argument should mostly use English sentences.)

Suppose for a contradiction that M is a DFA with
$$L(M) = A_{i}$$

and let n be the number of states in M.
Consider the words $W_{0}, W_{1}, ..., W_{n}$, where $W_{i} = O^{i}$. Since
this is a list of n+1 words and M has just n stades, Thure
exist i and j such that $i < j$ but M an W_{i} and M an W_{j}
end in the same state. It follows that M on $W_{i}1^{i}$ and M on
 $W_{j}1^{i}$ also end in the same state.
So M either accepts both $W_{i}1^{i}$ and $W_{j}1^{i}$, or M rejects both
of these words Bit $W_{i}1^{i} = O^{i}1^{i} \notin A$ and $W_{i}1^{i} = O^{i}1^{i} \in A$,

of there words. But $w_1 T = 0 + 2 A$ and $w_1 = 0 + ent,$ and so $L(M) \neq A$, a contradiction. Therefore A is not regular.