Name: Solutions
Directions: Show all work. No credit for answers without work.

1. Let $\Sigma=\{a, b\}$, and let M be the following automaton.

(a) [$\mathbf{1}$ point] List the sequence of states of M on the string w, where $w=a b b a a$. Is $w \in L(M) ?$

Since q_{2} is not an accepting state, $\omega \notin L(M)$.
(b) [2 points] Give a simple description for $L(M)$.
$L(M)=\left\{\omega \in \sum^{*}\right.$: The parity of a^{\prime} s al b's in w is the same $\}$
$\underline{\sim}$
$L(M)=\left\{\omega \in \Sigma^{*}:\right.$ either ω has an even number of a's al b's or w has an odd number d a's at $\left.b^{\prime} s\right\}$
or
$L(M)=\left\{\omega \in \Sigma^{*}\right.$: The length of ω is even $\}$
(c) $[\mathbf{1}$ point $]$ Construct a machine M^{\prime} with the property that $L\left(M^{\prime}\right)=\overline{L(M)}$.

Interchange accepting and rejecting states.

2. [3 parts, 2 points each] Let $\Sigma=\{a, b\}$. Construct (deterministic) finite automatons for the following languages over Σ.
(a) $\left\{w \in \Sigma^{*}: w\right.$ has at least two b 's $\}$

(b) $\left\{w \in \Sigma^{*}: w\right.$ has at most one $\left.a\right\}$

(c) $\left\{w \in \Sigma^{*}: w\right.$ has at least two b 's and at most one $\left.a\right\}$

