Directions: Show all work. No credit for answers without work.

1. Let $\Sigma = \{a, b\}$, and let M be the following automaton.

(a) [1 point] List the sequence of states of M on the string w, where w = abbaa. Is $w \in L(M)$?

(b) [2 points] Give a simple description for L(M). $L(M) = \{ w \in \mathbb{Z}^{*} : \text{ the parishy of a's and b's in w is the same } \}$ $L(M) = \{ w \in \Sigma^* : either w has an even number of o's all b's cr$ $w has an odd number of a's all b's }$

or

$$L(M) = \{ \omega \in \mathbb{Z}^{*} : \text{ the length of } \omega \text{ is even } \}$$
(c) [1 point] Construct a machine M' with the property that $L(M') = \overline{L(M')} = \overline{L(M')$

(c) [1 point] Construct a machine M' with the property that $L(M') = \overline{L(M)}$.

- 2. [3 parts, 2 points each] Let $\Sigma = \{a, b\}$. Construct (deterministic) finite automatons for the following languages over Σ .
 - (a) $\{w \in \Sigma^* : w \text{ has at least two } b$'s $\}$

(b) $\{w \in \Sigma^* : w \text{ has at most one } a\}$

(c) $\{w \in \Sigma^* : w \text{ has at least two } b$'s and at most one $a\}$

