Directions: You may work to solve these problems in groups, but all written work must be your own. See "Guidelines and advice" on the course webpage for more information.

- 1. Suppose that 15% of the population is infected with a virus. A test is developed which gives a positive result 98% of the time on an infected person and a positive result just 7% of the time on someone who is not infected. Mary tests positive for the virus. What is the probability Mary is actually infected?
- 2. Let $\Sigma = \{0, 1\}$, let $A = \bigcup_{k=0}^{2} \Sigma^{k}$, and let $B = \bigcup_{k=0}^{4} \Sigma^{k}$.
 - (a) List the strings in A. What is |A|?
 - (b) What is |B|?
 - (c) Recall that $AB = \{xy \mid x \in A \text{ and } y \in B\}$. Describe the members of AB. What is |AB|?
- 3. Let $\Sigma = \{0, 1\}$. We define languages A, B, and C as follows:

 $A = \{ w \in \Sigma^* \colon w \text{ contains more zeros than ones} \}$ $B = \{ w \in \Sigma^* \colon w \text{ contains more ones than zeros} \}$ $C = \Sigma^*.$

- (a) Give an example of a string x that belongs to the language A and a string y that does not belong to the language A.
- (b) Give a description of the language $A \cup B$.
- (c) Give a description of the language $A \cap B$.
- (d) Give a description of the language $\overline{A \cup B}$.
- (e) Give a description of the language AA.
- (f) Argue that $AA \subsetneq ACA$ by (1) showing that if $w \in AA$, then $w \in ACA$, and (2) giving an example of a string w which is in ACA but not in AA.
- (g) Argue that AB = ACB by showing that each string w is a member of AB if and only if w is also a member of ACB.