Directions: You may work to solve these problems in groups, but all written work must be your own. See "Guidelines and advice" on the course webpage for more information.

- 1. Let $A = \{1, 2\}$, let $B = \{2, 3, (4, 5)\}$, and let $C = \{\emptyset, \{1, 2\}, \{2, 1\}\}, D = \{2, 3, (5, 4)\}.$
 - (a) Determine |A|, |B|, and |C|.
 - (b) Determine the sets $A \times B$ and $A \times C$.
 - (c) True or False: $C \subseteq \mathcal{P}(A)$
 - (d) True or False: $A \subseteq \mathcal{P}(C)$
 - (e) Determine the set $B \triangle D$.
- 2. Pascal's Triangle. Let $[n] = \{1, 2, 3, \dots, n\}$.
 - (a) How many k-element subsets of [n] do not contain n?
 - (b) How many k-element subsets of [n] do contain n?
 - (c) Apply the rule of sum to explain Pascal's Formula: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.
 - (d) Pascal's Triangle is a triangular array where each row starts and ends with a 1, and every other entry is obtained by adding the nearest two entries in the previous row.

Describe the relationship between Pascal's Triangle and Pascal's formula.

- 3. A *bitstring* is an ordered list of zeros and ones; for example, 0110 and 10100 are bitstrings of lengths 4 and 5, respectively. As a special case, we use ε to denote the empty bitstring, which has length 0.
 - (a) Show that the set of all bitstrings of finite length is countable.
 - (b) Is the set of all bitstrings of infinite length countable? Justify your answer.
- 4. The Cartesian product can be extended to more than two factors. For example, $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, or \mathbb{N}^3 for short, is the set $\{(a_1, a_2, a_3): a_1 \in \mathbb{N} \text{ and } a_2 \in \mathbb{N} \text{ and } a_3 \in \mathbb{N}\}$. Show that \mathbb{N}^3 is countable.