Directions: You may work to solve these problems in groups, but all written work must be your own. See "Guidelines and advice" on the course webpage for more information.

1. Let N be the NFA pictured below.

(a) Which of the following strings are accepted by N ? Explain. Strings: $\lambda, b, b b, b b b, b b b b$.
(b) Convert N into an equivalent DFA.
2. Let $\Sigma=\{0,1\}$, let $A=\{w \mid w$ ends in a 1$\}$, and let $B=\{w \mid w$ has odd length $\}$. Construct a DFA with 4 states that recognizes the language $A B$. (Hint: it may be easier to first construct an NFA, convert to a DFA, and then simplify the DFA.)
3. Let $\Sigma=\{0,1\}$. Let A be the language $\{w \mid w$ is an integer in binary notation and w is divisible by 5$\}$. For example, 1010 represents $1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=8+2=10$, so $1010 \in A$. On the other hand, 01110 represents $0 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=8+4+2=14$ so $01110 \notin A$. Give a DFA that computes A.
4. Convert the following NFA to a DFA. Simplify if possible.

