Directions: You may work to solve these problems in groups, but all written work must be your own. See "Guidelines and advice" on the course webpage for more information.

1. Let $\Sigma=\{a, b\}$ and let M be the automaton pictured below (from Sipser 1.1).

(a) Give a simple English description for $L(M)$.
(b) Two automata are equivalent if their languages are equal. The DFA above has 3 states but is equivalent to a DFA with only 2 states. Construct a DFA with 2 states that is equivalent to M.
2. Let $\Sigma=\{0,1\}$. Give state diagrams of DFAs for the following languages.
(a) $\{w \mid w$ begins with a 1 and ends with a 0$\}$.
(b) $\{w \mid w$ has an even number of 1 s or contains the substring 101$\}$
3. A palindrome is a string that reads the same forwards and backwards. Let $\Sigma=\{a, b\}$, and let $A=\left\{w \in \Sigma^{*}: w\right.$ is a palindrome $\}$. For example, $\lambda, a, a b a, a b b a b a a b a b b a \in A$ but $a b b, a a b a \notin A$. Show that A is not a regular language. Your argument should primarily use English sentences, with proper grammar, spelling, and punctuation.
