Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Let p be an odd prime. Determine the number of mutually incongruent solutions to $x^{2}+y^{2} \equiv 0$ $(\bmod p)$. (A solution (x, y) is congruent to $\left(x^{\prime}, y^{\prime}\right)$ if $(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)(\bmod p)$. When $p=3$, there is 1 solution (0,0), and when $p=5$, there are 9 solutions.)
2. Infinitely many primes congruent to 7 modulo 8.
(a) Prove that if n is an integer and p is an odd prime dividing $n^{2}-2$, then $p \equiv \pm 1(\bmod 8)$.
(b) Prove that there are infinitely many primes p such that $p \equiv 7(\bmod 8)$.
3. Sums of three squares.
(a) [NT 11-2.9] Show that no integer of the form $4^{a}(8 m+7)$ is the sum of three squares. Hint: consider the congruence $x^{2}+y^{2}+z^{2} \equiv 7(\bmod 8)$.
(b) Prove or disprove: if x and y are representable as the sum of three squares, then so is $x y$.
(c) Prove that if x is representable as the sum of three positive squares, then so is x^{2}.
4. Partition Exercises.
(a) Find the conjugate partition to $16=5+4+4+2+1$.
(b) [NT 12-3.1] For the case $n=8$, list the corresponding pairs of partitions of n in which all parts are odd and partitions of n into distinct parts given by Theorem 12-3.
5. [Challenge] Prove or disprove: there are infinitely many integer pairs (a, b) such that

$$
2 a^{2}-b^{2}=1 .
$$

6. [Challenge] Let p be a prime with $p \equiv 1(\bmod 4)$. Count the number of solutions to $x_{1}^{2}+\cdots+x_{n}^{2} \equiv 0(\bmod p)$. (The case $n=2$ appears in problem 1.)
