Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Dirichlet product and Mobius pairs. Let $\mathbb{O}: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ be the identically zero function.
(a) Prove that the Dirichlet product is bilinear. That is, for all functions $f, g, h: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ and all constants $\alpha, \beta \in \mathbb{R}$, we have $f *(\alpha g+\beta h)=\alpha(f * g)+\beta(f * h)$.
(b) Prove that if $f * g=\mathbb{O}$, then $f=\mathbb{O}$ or $g=\mathbb{O}$.
(c) Show that if both $\left(h_{1}, h_{2}\right)$ and $\left(h_{2}, h_{1}\right)$ are Mobius pairs, then $h_{1}=h_{2}=\mathbb{O}$.

2. Primitive Roots I.

(a) Find all primitive roots modulo 5 , modulo 9 , modulo 11 , modulo 13 , and modulo 15.
(b) Let a and m be positive, relatively prime integers. Let S be the set of primes dividing $\phi(m)$. Prove that if $a^{\phi(m) / p} \not \equiv 1(\bmod m)$ for each $p \in S$, then a is a primitive root of m.

3. Primitive Roots II.

(a) Let m_{1} and m_{2} be relatively prime integers, and suppose that p and q are odd primes such that $p \mid m_{1}$ and $q \mid m_{2}$. Let $m=m_{1} m_{2}$. Prove that if a and m are relatively prime, then $a^{\phi(m) / 2} \equiv 1(\bmod m)$.
(b) Show that if m has two distinct odd prime divisors, then m has no primitive roots.
4. [NT 8-1.4] Modify the proof of Theorem 8-1 to prove that there exist infinitely many primes congruent to $5(\bmod 6)$.
5. [NT 8-1.16] Let $n=132$!. How many zeros are at the end of the base 2 representation of n ? How many zeros are at the end of the base 10 representation of n ?
6. Upper bound on $\sum_{p \leq n} \frac{1}{p}$. Let $P[a, b)$ be the set of all primes p such that $a \leq p<b$. Let $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ and recall $\ln n \leq H_{n} \leq 1+\ln n$.
(a) Show that $\sum_{p \in P\left[1,2^{t}\right)} \frac{1}{p} \leq 16 H_{t}$. (Hint: use Chebychev's theorem to bound $\sum_{p \in P\left[2^{k-1}, 2^{k}\right)} \frac{1}{p}$.)
(b) Prove that $\sum_{p \leq n} \frac{1}{p} \leq C \ln \ln n$ for some constant C.
7. Lower bound on $\sum_{p \leq n} \frac{1}{p}$. Let $z_{n}=\sum_{p \leq n} \frac{1}{p}$ and let $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$.
(a) Use an integral comparison to show that $\sum_{k \geq t} \frac{1}{k^{2}} \leq \frac{1}{t-1}$. Conclude that $\sum_{p} \frac{1}{p^{2}} \leq \frac{3}{4}$.
(b) Prove that $e^{z_{n}} \geq \prod_{p \leq n}\left(1+\frac{1}{p}\right)$.
(c) Prove that $\prod_{p \leq n}\left(1+\frac{1}{p}\right) \geq\left(1-\sum_{p \leq n} \frac{1}{p^{2}}\right) H_{n}$. Conclude that $z_{n} \geq(1-o(1)) \ln \ln n$.
8. [Challenge] Let $f(x)$ be a polynomial with integer coefficients. Prove that for infinitely many primes p, there exists an integer n such that $p \mid f(n)$.

