Directions: Solve the following problems. See the course syllabus and the Homework Webpage on the course website for general directions and guidelines.

1. Let M be the set of all positive integers m such that $a^{\phi(m)+1} \equiv a(\bmod m)$ for each integer a. Give a simple characterization of M and prove that your characterization is correct.
2. [NT 5-2.\{9,10\}]
(a) Prove that if p is a prime and $p \equiv 1(\bmod 4)$, then $\left[\left(\frac{p-1}{2}\right)!\right]^{2} \equiv-1(\bmod p)$.
(b) Use the above to find a solution for each of the following.
i. $x^{2} \equiv-1(\bmod 13)$
ii. $x^{2} \equiv-1(\bmod 17)$
3. Prove that if m is not a prime and $\phi(m) \mid m-1$, then m has at least three distinct prime factors.
4. Prove that the number of ways of writing n as a sum of consecutive positive integers equals $d(m)$, where m is the largest odd divisor of n. For example, for $n=42$ we have $m=21$ and $d(m)=d(21)=4$. As expected, there are 4 ways to express 42 as the sum of consecutive positive integers: $42,13+14+15,9+10+11+12$, and $3+4+\cdots+9$.
5. [NT 6-4.2] Prove that if $f(n)$ is multiplicative and not identically zero, then $\sum_{d \mid n} \mu(d) f(d)=$ $\prod_{p \mid n}(1-f(p))$.
6. [Challenge] Prove that if n divides $3^{n}-1$, then $n=1$ or n is even.
