Name: \qquad
Directions: Show all work. Answers without work generally do not earn points.

1. [4 parts, 3 points each] Let $\Sigma=\{0,1,2\}$. Define the following languages.
$A=\{w \mid$ the symbols of w are in sorted order (non-decreasing from left to right) $\}$
$B=\{w \mid w$ has more 1's than 0's $\}$
$C=\{w \mid$ the symbols of w can be split into two groups whose sums are equal $\}$
For example: λ and 01201 are both words in C (we can split 01201 into two groups with equal sum by putting both one's in the first group and the remaining symbols in the second group), and $1211 \notin C$ (no split is possible).
(a) Give an example of a string in $A \cap B \cap C$.
(c) True or False: $A \cap B \subseteq C$.
(b) Give an example of a string in $A-B$.
(d) True or False: $B B=B$.
2. [4 points] Let $\Sigma=\{0\}$. Find all languages over Σ that are computable by DFAs with at most 2 states.
3. [4 parts, 4 points each] Let $\Sigma=\{a, b\}$. Construct DFAs for the following languages.
(a) $\{w \mid w$ has at least two a 's $\}$
(b) $\{w \mid w$ has no pair of consecutive b 's $\}$
(c) $\{w \mid$ the length of w is divisible by 3$\}$
(d) $\{w \mid w$ ends with $a b\}$
4. Let $\Sigma=\{a, b\}$ and define the following languages.

$$
\begin{aligned}
& A_{1}=\left\{(a b)^{n} \mid n \geq 0\right\}=\{\lambda, a b, a b a b, a b a b a b, \ldots\} \\
& A_{2}=\left\{w \mid w \text { has an odd number of } a^{\prime} s\right\}
\end{aligned}
$$

(a) [5 points] Give a simplified DFA for A_{1}.
(b) [5 points] Give a simplified DFA for A_{2}.
(c) [8 points] Give a DFA for $A_{1} \cup A_{2}$.
5. [4 parts, 4 points each] Let $\Sigma=\{a, b, c\}$. For each string $w \in \Sigma^{*}$, let $\# a(w), \# b(w)$, and $\# c(w)$ denote the number of a 's, b 's, and c 's in w. Define the following languages.

$$
\begin{aligned}
& A=\{w \mid w \text { contains a consecutive pair of } a \text { 's }\} \\
& B=\{w \mid \# b(w)=1 \text { and the single } b \text { in } w \text { is the second to last symbol }\} \\
& C=\{w \mid \text { the 3-tuple }(\# a(w), \# b(w), \# c(w)) \text { contains at least one even integer }\}
\end{aligned}
$$

Give NFAs for the following using at most the specified number of states.
(a) A, at most 3 states
(b) B, at most 3 states
(c) $A B$, at most 5 states
(d) C, at most 7 states
6. Let $\Sigma=\{a, b\}$ and let N be the following NFA (below left).

(a) [8 points] For each state/input pair, give the set of successor states in the table above.
(b) $[6$ points] Convert N to a DFA.
(c) [4 points] Simplify your DFA above. Use your simplified DFA to give a simple description of the language computed by N.
7. [16 points] Let $\Sigma=\{a, b\}$ and define the following languages.

$$
\begin{aligned}
& A=\{w \mid w \text { starts and ends with an } a\} \\
& B=\{w \mid w \text { has an even length }\}
\end{aligned}
$$

Note that $\lambda \notin A$ but $a \in A$. Give a simplified DFA that computes the language $B A$.
8. [4 bonus points] Let $\Sigma=\{0,1,2\}$ and recall the language C from problem (1), where $C=\{w \mid$ the symbols of w can be split into two groups whose sums are equal $\}$. Is the language C regular? Justify your answer.

Scratch Paper

