Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [5 parts, 2 points each] Let $\Sigma=\{a, b, c\}$; we define the following languages:

$$
\begin{aligned}
& F=\{w: \text { the number of } a \text { 's equals the number of } b \text { 's }\} \\
& G=\left\{w: \text { the number of } b \text { 's equals the number of } c^{\prime} \mathrm{s}\right\} \\
& H=\left\{w: \text { all } a \text { 's in } w \text { appear before all } c^{\prime} \mathrm{s}\right\}
\end{aligned}
$$

(a) Give an example of a word $w \in F-G$.
(b) Give two examples of words in $F \cap G$.
(c) True or False: $F F=F$. If True, give an argument justifying your claim. If False, give an example of a word w that belongs to exactly one of the languages in $\{F F, F\}$ and is omitted from the other.
(d) True or False: $F H=H$. If True, give an argument justifying your claim. If False, give an example of a word w that belongs to exactly one of the languages in $\{F H, H\}$ and is omitted from the other.
(e) True or False: $F \cup G \subseteq F G$. If True, give an argument justifying your claim. If False, give an example of a word w that belongs to $F \cup G$ but does not belong to $F G$.

