Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [4 parts, 1 point each] Let $A=\{1,2,3\}$, let $B=\{3,4\}$, and let $C=\varnothing$.
(a) Determine the sets $A \times B$ and $A \times C$.
(b) True or False (write the whole word): $(A-B) \subseteq(A-B)^{2}$.
(c) Give two examples of elements in $\mathcal{P}(A) \times \mathcal{P}(B)$.
(d) Give two examples of elements in $\mathcal{P}(A \times B)$.
2. [2 parts, $\mathbf{1}$ point each] Express the following statements using concise mathematical notation. For example, the statement "The set A is a member of the set B " may be expressed as " $A \in B$ ".
(a) "Every element in A is also an element in B."
(b) "Every subset of B and every subset of C is a member of the set A."
3. [$\mathbf{2}$ points] An infinite bitstring is periodic if it consists of repeated copies of a finite bitstring. For example, $0000 \cdots$ consists of repeated copies of 0 , and $011011011 \cdots$ consists of repeated copies of 011 . Let A be the set of periodic infinite bitstrings. Is A countable? Justify your answer.
4. [2 points] A sequence $n_{1}, n_{2}, n_{3}, \ldots$ of positive integers is increasing if $n_{1}<n_{2}<\cdots$. Let B be the set of increasing sequences of positive integers. Is B countable? Justify your answer.
