Name: \qquad
Directions: Show all work. No credit for answers without work.

1. [6 parts, 1 point each] Let $A=\{3,4,1,\{2,1\}\}, B=\{\varnothing,\{1\},\{2\}\}$, and $C=\{1,2\}$.
(a) Determine the sizes of A, B, and C.
(b) Determine the set $A-C$.
(c) True or False (write entire word): $\{1,2\} \in A$.
(d) True or False (write entire word): $\{\varnothing\} \in B$.
(e) True or False (write entire word): $\{1\} \in \mathcal{P}(B)$.
(f) True or False (write entire word): $B \subseteq \mathcal{P}(C)$
2. [2 points] Suppose that $A \subseteq B$, meaning that A is a subset of B. Describe the relationship between $\mathcal{P}(B-A)$ and $\mathcal{P}(B)-\mathcal{P}(A)$. Are these sets always equal? Is one always a subset of the other? Explain your answer. Hint: it may help to draw a picture.
3. [2 points] Give an example of a set A of size at least 2 such that $A \subseteq \mathcal{P}(A)$. (Partial credit for giving a smaller set A that satisfies $A \subseteq \mathcal{P}(A)$.)
