Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Let $\Sigma=\{0,1\}$ and let M be the automaton pictured below.

(a) List the sequence of states of M on input 1101. Is $1101 \in L(M)$?
(b) Give an English description for $L(M)$.
2. Let $\Sigma=\{a, b\}$. For each language A below, construct an automaton M that recognizes it.
(a) $\{w \mid w$ has at most $1 b\}$.
(b) $\{w \mid$ the number of a 's in w is divisible by 3$\}$
(c) $\{w \mid w$ has at most $1 b$ and the number of a 's is divisible by 3$\}$.
3. Let $\Sigma=\{a, b\}$ and let M be the automaton pictured below (from Sipser 1.1).

(a) Give a simple English description for $L(M)$.
(b) Two automatas are equivalent if their languages are equal. The automaton above has 3 states but is equivalent to an automaton with only 2 states. Construct an automaton with 2 states that is equivalent to M.
