Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Let $\Sigma=\{0,1\}$, let $A=\bigcup_{k=0}^{2} \Sigma^{k}$, and let $B=\bigcup_{k=0}^{4} \Sigma^{k}$.
(a) List the strings in A. What is $|A|$?
(b) What is $|B|$?
(c) Recall that $A B=\{x y \mid x \in A$ and $y \in B\}$. Describe the members of $A B$. What is $|A B|$?
2. Let $\Sigma=\{0,1\}$. We define languages A, B, and C as follows:

$$
\begin{aligned}
& A=\left\{w \in \Sigma^{*}: w \text { contains more zeros than ones }\right\} \\
& B=\left\{w \in \Sigma^{*}: w \text { contains more ones than zeros }\right\} \\
& C=\Sigma^{*} .
\end{aligned}
$$

(a) Give an example of a string x that belongs to the language A and a string y that does not belong to the language A.
(b) Give a description of the language $A \cup B$.
(c) Give a description of the language $A \cap B$.
(d) Give a description of the language $\overline{A \cup B}$.
(e) Give a description of the language $A A$.
(f) Argue that $A A \subsetneq A C A$ by (1) showing that if $w \in A A$, then $w \in A C A$, and (2) giving an example of a string w which is in $A C A$ but not in $A A$.
(g) Argue that $A B=A C B$ by showing that each string w is a member of $A B$ if and only if w is also a member of $A C B$.

