Directions: You may work to solve these problems in groups, but all written work must be your own. **Show your work**; See "Guidelines and advice" on the course webpage for more information.

- 1. A fair coin is flipped n times. In terms of n, determine the probability of the following events.
 - (a) All flips are heads.
 - (b) At least one flip is tails.
 - (c) No consecutive pair of flips is the same (i.e. both heads or both tails).
 - (d) There are the same number of heads as tails. (Note: when n is odd, this probability is zero, but what is the probability when n is even?)
- 2. Suppose that n people each choose a number independently at random from the set $\{1, \ldots, 1000\}$. What is the smallest value of n for which it becomes more likely than not that at least two people choose the same number?
- 3. Sasha and Thomas each toss a fair coin 3 times.
 - (a) For $0 \le i \le 3$, let A_i be the event that *i* of Sasha's flips are heads (and the other 3 i flips are tails). For each $0 \le i \le 3$, determine $\Pr(A_i)$.
 - (b) What is the probability that Sasha and Thomas toss exactly the same number of heads?
 - (c) What is the probability that Sasha gets more heads than Thomas?
- 4. The numbers in the set $\{1, 2, ..., 20\}$ are arranged in a random order. What is the probability that there are consecutive perfect squares? (Hint: think about the complementary event.)
- 5. Suppose that a set R of 5 cells is chosen at random from the 9 cells in a tic-tac-toe board. What is the probability that R contains all cells from some row or column of the board? (Note: the event does not include situations in which R contains a diagonal, unless R also contains a row or column.)