Directions: You may work to solve these problems in groups, but all written work must be your own. **Show your work**; See "Guidelines and advice" on the course webpage for more information.

- 1. A pair of dice is rolled. Let A be the event that both dice show the same value, let B be the event that the sum is at least 9, and let C be the event that the first die is in the lower half (i.e. is 1, 2, or 3).
 - (a) Express the event A as a subset of the sample space Ω .
 - (b) Determine Pr(A), Pr(B), and Pr(C).
 - (c) Determine $Pr(A \cap B)$, $Pr(B \cap C)$, and $Pr(C \cap A)$.
 - (d) For each pair of events $\{A, B\}$, $\{B, C\}$, and $\{C, A\}$, decide whether the events are independent, positively correlated, or negatively correlated.
- 2. [3.4.2] Joshua draws two ping-pong balls from a bowl of twenty ping-pong balls numbered 1 to 20. Provide a sample space Ω for this experiment if
 - (a) the first ball drawn is replaced before the second ball is drawn.
 - (b) the first ball drawn is not replaced before the second ball is drawn.
- 3. [3.4.10] Twenty-five slips of paper, numbered $1, 2, \ldots, 25$ are placed in a box. If Amy draws six of these slips, without replacement, determine the probability of the following. Let A be the event that the second smallest number drawn is 5 and let B be the event that the fourth smallest number drawn is 15.
 - (a) Determine Pr(A).
 - (b) Determine $\Pr(B)$.
 - (c) Determine $\Pr(A \cap B)$.
 - (d) Determine $Pr(A \cup B)$.
- 4. [3.5.6] Let Ω be a sample space and let A and B be events. Find a formula for $\Pr(A \triangle B)$ in terms of $\Pr(A)$, $\Pr(B)$, and $\Pr(A \cap B)$.
- 5. [3.5.9] Juan tosses a fair coin five times. What is the probability that, after each toss, the total number of heads is strictly larger than the total number of tails?