Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Let $A=\{1,2\}$, let $B=\{2,3,(4,5)\}$, and let $C=\{\emptyset,\{1,2\},\{2,1\}\}, D=\{2,3,(5,4)\}$.
(a) Determine $|A|,|B|$, and $|C|$.
(b) Determine the sets $A \times B$ and $A \times C$.
(c) True or False: $C \subseteq \mathcal{P}(A)$
(d) True or False: $A \subseteq \mathcal{P}(C)$
(e) Determine the set $B \triangle D$.
2. A bitstring is an ordered list of zeros and ones; for example, 0110 and 10100 are bitstrings of lengths 4 and 5 , respectively. As a special case, we use ε to denote the empty bitstring, which has length 0 .
(a) Show that the set of all bitstrings of finite length is countable.
(b) Is the set of all bitstrings of infinite length countable? Justify your answer.
3. Let L be the set of lines in the plane which (1) intersect the x-axis and the y-axis at integral points, and (2) do not contain the origin (0,0). For example, L contains the graph of $y=\frac{2}{3} x+4$ since this line meets the y-axis at $y=4$ and the x-axis at $x=-6$. But L does not contain the graph of $y=4 x+3$, since this line meets the x-axis at $x=-\frac{3}{4}$, and $-\frac{3}{4}$ is not an integer, and L does not contain the graph of $y=x$, since this line passes through the origin $(0,0)$. Is the set L countable? Justify your answer.
