Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Let $A=\{1,2,3\}, B=\{\{1,2\}, 2,3\}, C=\{\{1,2,3\}\}$, and $D=\{\varnothing\}$.
(a) Determine the sizes of each of the sets A, B, C, and D.
(b) Determine $A \cap B, C \triangle D$, and $B-A$.
(c) True or False: $A \subseteq C$
(d) True or False: $A \in \mathcal{P}(C)$.
(e) True or False: $C \in \mathcal{P}(A)$.
(f) True or False: $C \subseteq \mathcal{P}(A)$.
(g) True or False: $B \cup D=B$.
(h) True or False: $D \in \mathcal{P}(C)$.
(i) True or False: $D \in \mathcal{P}(\mathcal{P}(C))$.
(j) Determine the set $\mathcal{P}(B)-\mathcal{P}(A)$.
2. Let $[n]=\{1,2,3, \ldots, n\}$. Describe a way to pair the subsets of $[n]$ of size k with the subsets of size $n-k$. What can you conclude about $\binom{n}{k}$ and $\binom{n}{n-k}$? Hint: if you find this question confusing, generate data for small cases. With $n=5$ and $k=2$, list the subsets of $\{1,2,3,4,5\}$ of size 2 in one column and size $n-k$ or 3 in a second column. Try to find a natural way to pair them up. If it still unclear, generate more data. When ready, generalize.
