Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Binomial theorem.
(a) Find the coefficient of $x^{6} y^{2} z^{3}$ in $(2 x-y+3 z)^{11}$.
(b) Compute $\sum_{k=0}^{n} 2^{k}\binom{n}{k}$.
(c) Compute $\sum_{k=0}^{n} \frac{1}{k!(n-k)!}$. Hint: recall the formula for $\binom{n}{k}$. Relate the given sum to one involving binomial coefficients.
2. How many 5 -digit ATM pin numbers:
(a) have distinct digits that increase from left to right? (So 02379 counts, but 02279 and 20458 do not.)
(b) have digits that are non-decreasing from left to right? (So 02379 and 02279 count, but 20458 does not.)
3. Solutions to equations. Count the number of non-negative integral solutions to the following equations.
(a) $x_{1}+x_{2}+\cdots+x_{6}=50$
(b) $x_{1}+x_{2}+\cdots+x_{6}=50$ where each x_{i} is at least 4
(c) $x_{1}+x_{2}+\cdots+x_{6}=50$ where $x_{1} \leq 20$
(d) $x_{1}+x_{2}+\cdots+x_{6}=50$ where $1 \leq x_{i} \leq 30$ for all i.
4. Lattice paths with diagonal steps. A diagonal step in a lattice path moves 1 unit in the x-direction and 1-unit in the y direction.

(a) For each k with $0 \leq k \leq 5$, determine the number of lattice paths with diagonal steps from $(0,0)$ to $(5,5)$ that have exactly k diagonal steps. (A lattice path from $(0,0)$ to $(5,5)$ with 1 diagonal step is displayed above.)
(b) Add your results from part (a) to determine the total number of lattice paths from (0,0) to $(5,5)$ with diagonal steps.
(c) Using Σ notation, give a summation formula for the number of lattice paths with diagonal steps from $(0,0)$ to (n, n).
