Directions: You may work to solve these problems in groups, but all written work must be your own. Show your work; See "Guidelines and advice" on the course webpage for more information.

1. Let $\Sigma=\{0,1\}$. Let A be the language $\{w \mid w$ is an integer in binary notation and w is divisible by 5$\}$. For example, 1010 represents $1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=8+2=10$, so $1010 \in A$. On the other hand, 01110 represents $0 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}=8+4+2=14$ so $01110 \notin A$. Give a DFA that computes A.
2. Convert the following NFA to a DFA. Simplify if possible.

3. Let $\Sigma=\{a, b\}$, let $A=\{w: w$ ends in an $a\}$, and let $B=\{w: w$ has an odd number of b 's $\}$. Give a DFA for the language $A B$ and then simplify.
4. Given a language A and a non-negative integer k, we define A^{k} to be the set of words w obtained by concatenating k words in A. We also define $A^{*}=\bigcup_{k \geq 0} A^{k}$; that is, A^{*} consists of all strings that can be obtained by concatenating zero or more strings in A.
(a) Let $\Sigma=\{a, b\}$ and let $A=\{w: w$ starts and ends with different symbols $\}$. Give a simple, plain English description for the language A^{*}.
(b) Use your description in part (a) to give a DFA for A^{*} with at most 6 states.
