Directions: Solve 3 of the following 4 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. Prove that if $G$ has no induced $2 K_{2}$, then $\chi(G) \leq\binom{\omega(G)+1}{2}$. Here, $2 K_{2}$ denotes the disjoint union of two copies of $K_{2}$; that is, $2 K_{2}$ is the 1 -regular 4 -vertex graph. (Hint: use a maximum clique to define a collection of $\binom{\omega(G)}{2}+\omega(G)$ independent sets that cover the vertices.)
2. Let $G$ be a $k$-chromatic graph with girth 6 and order $n$. Construct $G^{\prime}$ as follows. Let $T$ be an independent set of $k n$ vertices. Take $\binom{k n}{n}$ pairwise disjoint copies of $G$, one for each way to choose an $n$-set $S \subset T$. Add a matching between each copy of $G$ and its corresponding $n$-set $S$. Prove that the resulting graph has chromatic number $k+1$ and girth 6. (Comment: Since $C_{6}$ has chromatic number 2 and girth 6 , the process can start and these graphs exist.)
3. Let $G$ be a graph with no induced copy of the claw $\left(K_{1,3}\right)$.
(a) Show that in a proper coloring, each subgraph of $G$ induced by the union of two color classes consists of paths and even cycles.
(b) An equitable coloring of a graph is a proper vertex-coloring in which every pair of color classes differs in size by at most 1 . Prove that $G$ has an equitable coloring that is optimal (i.e. uses just $\chi(G)$ colors).
4. Let $G$ be a connected $n$-vertex planar graph with $m$ edges and girth $g$. Prove that $m \leq$ $(n-2) g /(g-2)$.
5. Prove that every $n$-vertex plane graph decomposes into at most $2 n-4$ edges and facial triangles. Hint: induction on the number of facial triangles.
6. Triangles and distance in planar graphs.
(a) Prove that if $G$ is an $n$-vertex $m$-edge plane graph, then $G$ has at least $8+2 m-4 n$ facial triangles.
(b) Prove that if $G$ is an $n$-vertex planar graph and $\delta(G) \geq 5$, then $G$ contains $K_{4}^{-}$as a subgraph. (Here, $K_{4}^{-}$is the graph obtained from $K_{4}$ by deleting an edge; it is sometimes called the kite.)
(c) Construct a sequence of 4-regular planar graphs such that in the $k$ th graph, the distance between any two triangles is at least $k$.

Remark: From part (b), a planar graph with minimum degree at least 5 contains a pair of triangles that share an edge and so are at distance zero. Therefore there is no analogous construction of 5-regular planar graphs with well-separated triangles.

