Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. Let d_{1}, \ldots, d_{n} be positive integers with $n \geq 2$. Prove that there exists a tree with vertex degrees d_{1}, \ldots, d_{n} if and only if $\sum_{i=1}^{n} d_{i}=2 n-2$.

2 . For $n \geq 4$, let G be an n-vertex graph with at least $2 n-3$ edges. Prove that G has two cycles of equal length.
3. Determine with proof ex $\left(n, P_{n}\right)$, the maximum number of edges in an n-vertex graph that does not contain a spanning path.
4. (a) Prove that every connected graph has an orientation in which the number of vertices with odd outdegree is at most 1. (Hint: consider an orientation with the fewest number of vertices with odd outdegree.)
(b) Use part (a) to conclude that every connected graph with an even number of edges has a P_{3}-decomposition.
5. Let G be a directed graph without loops. Prove that G has an independent set S such that every vertex in G is reachable from a vertex in S by a directed path of length at most 2 . Hint: use induction on $|V(G)|$ and recall that the induction hypothesis applies to all graphs with fewer vertices, not just graphs with $|V(G)|-1$ vertices.
6. Counting in tournaments. Let T be an n-vertex tournament.
(a) Prove that T has $\binom{n}{3}-\sum_{v \in V(T)}\binom{d^{+}(v)}{2}$ (directed) 3-cycles.
(b) For odd n, prove that there is an n-vertex Eulerian tournament.
(c) For odd n, determine the maximum possible number of 3 -cycles in an n-vertex tournament.

