Directions: Solve 5 of the following 6 problems. All written work must be your own, using only permitted sources. See the "General Guidelines and Advice" on the homework page for more details.

1. Graphs defined algebraically.
(a) Let G_{n} be the graph whose vertices are the permutations of $\{1, \ldots, n\}$ with two permutations adjacent if they differ by interchanging a pair of adjacent entries. Note that $G_{3}=C_{6}$. Prove that G_{n} is connected.
(b) Let H_{n} be the graph whose vertices are the permutations of $\{1, \ldots, n\}$ with two permutations adjacent if they differ by interchanging a pair of entries (which may or may not be adjacent). Note that $H_{3}=K_{3,3}$ and G_{n} is a subgraph of H_{n}. Prove that H_{n} is bipartite. Hint: for each permutation $a_{1} \cdots a_{n}$, count the pairs (i, j) with $i<j$ and $a_{i}>a_{j}$; these are called inversions.
2. Forbidden induced subgraphs.
(a) Let G be a connected graph not having P_{4} or C_{3} as an induced subgraph. Prove that G is a biclique.
(b) Let G be a connected graph not having P_{4} or C_{4} as an induced subgraph. Prove that G has a vertex adjacent to all other vertices. (Hint: consider a vertex of maximum degree.)
3. Let P and Q be paths of maximum length in a connected graph G. Prove that P and Q have a common vertex.
4. An $x y$-trail W is greedy if every edge incident to y is contained in W. Let G be an Eulerian graph, and let x be a vertex in G. Prove that every greedy trail starting from x is an Eulerian circuit if and only if every cycle in G contains x.
5. Cut-edges and degrees.
(a) Prove that an even graph has no cut-edge. For each $k \geq 1$, construct a ($2 k+1$)-regular graph having a cut-edge.
(b) For $k \geq 2$, prove that a k-regular bipartite graph has no cut-edge.
6. Counting cycles.
(a) Count the cycles of length n in K_{n}.
(b) Count the cycles of length $2 n$ in $K_{n, n}$.
(c) Count the cycles of length 5 in the Petersen graph.
