1. Write the following functions as a product of two trigonometric functions.
(a) $\cos (2 t)+\cos (3 t)$
(b) $\cos (2 t)+\sin (3 t)$. Hint: $\cos (z)=\sin (z+\pi / 2)$ and $\sin (z)=\cos (z-\pi / 2)$.
2. [3.8.9] An undamped spring-mass system with a mass that weighs 6 lb and a spring constant of $1 \mathrm{lb} /$ in is suddenly set in motion at $t=0$ by an external force of $4 \cos 7 t \mathrm{lb}$. Determine the position of the mass $u(t)$ (in) at time $t(\mathrm{~s})$, expressing $u(t)$ as a product of two trigonometric functions.
3. Now, modify the system in $\# 2$ so that the damping constant is $\gamma=1 \mathrm{lb} \cdot \mathrm{s} / \mathrm{in}$. Find the forced response $U(t)$, expressed in the form $U(t)=R \cos (7 t-\delta)$. How does the magnitude of the forced response compare with that of the static response? Is this system demonstrating resonance?
