1. Rewrite $-2 \cos (3 t)-3 \sin (3 t)$ in the form $R \cos \left(\omega_{0} t-\delta\right)$.
2. [3.7.13] A certain vibrating system satisfies the equation $u^{\prime \prime}+\gamma u^{\prime}+u=0$. Find the value of the damping coefficient γ for which the quasi period of the damped motion is 50% greater than the period of the corresponding undamped motion.
3. [3.7.9] A mass of 20 g stretches a spring 5 cm . Suppose that the mass is also attached to a viscus damper with a damping constant of $400 \mathrm{dyn} \cdot \mathrm{s} / \mathrm{cm}$. (Note: $1 \mathrm{dyn}=1 \mathrm{~g} \mathrm{~cm} / \mathrm{s}^{2}$). If the mass is pulled down an additional 2 cm and then released, (a) find its position u as a function of time t. (b) Determine the quasi-frequency and quasi-period. (c) Determine the ratio of the quasi-period to the period of corresponding undamped motion.
