1. A population of ants grows logistically. Initially, the ant population is 10% of the carrying capacity. After 1 year, the ant population has doubled. Compute
(a) The population (as a percentage of carrying capacity) after 2 years.
(b) The time at which the population reaches 90% of carrying capacity.
(c) The time at which the population is increasing fastest.

Hint: recall the logistic equation $\frac{d y}{d t}=r(1-(y / K)) y$. Let $y(t)$ be the population of ants in units of carrying capacity, so that $K=1, y(0)=0.1$, and $y(1)=0.2$.
2. Find an integrating factor $\mu(x)$ that depends only on x to solve

$$
\frac{d y}{d x}=-\left(\frac{y \sin x+2 y x(\cos x)}{x \sin x}\right)
$$

Hint: rewrite the equation in standard differential form. After transforming to an exact equation, try imposing $\psi_{y}=N$ first.
3. Compute the following.
(a) $\frac{3+2 i}{4-i}$
(b) $(2+i) e^{1-\frac{\pi}{2} i}$

