1. Apply the existence and uniqueness theorems to the following. What can you conclude without solving the differential equation?

(a)
$$y' = t \ln y \text{ with } y(1) = 1$$

(b)
$$y' = (\ln t)y \text{ with } y(1) = 1$$

(c)
$$(t-6)y' + y = \sqrt{t+1}$$
 with $y(0) = 0$

(d)
$$y' = |y|$$
 with $y(0) = 0$.

2. Solve $y' + ty = ty^4$ using the Bernoulli eqn. substitution $v = y^{1-n}$.

- 3. A large-capacity fish tank initially contains 100 gal of water and 20 lbs of salt, but the salt concentration is too high. Fresh water is pumped in at a rate of 1 gal/min and the tank is drained at a rate of 0.5 gal/min. Assume the salt is well-mixed in the tank.
 - (a) Write an equation for V(t), where V is the volume of water (in gal) in the tank at time t (in minutes).

(b) Write a differential equation for Q(t), where Q is the quantity of salt in the tank (in lbs) at time t (in minutes).

(c) Solve for Q(t).

(d) How long will it take for the tank to reach a concentration of 0.1 lbs of salt per gallon?