Name: _

Directions: Show all work. No credit for answers without work. When possible, final answers should involve real numbers only.

1. [10 points] Solve the IVP 2y'' - y' - 3y = 0 with y(0) = 1 and y'(0) = 1.

- 2. Consider Euler's method to approximate the solution to y' = y passing through (0, 1).
 - (a) [10 points] With step size h and starting with $(x_0, y_0) = (0, 1)$, use Euler's method to compute (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) . Hint: factor your answer for y_2 and y_3 .

(b) [5 points] Use part (a) to give formulas for x_n and y_n in terms of n and h.

3. [15 points] Find the general solution to y'' - 10y' + 29y = 0.

4. **[15 points]** Find the general solution to $y^{(5)} + 2y^{(4)} - 3y^{(3)} = 0$.

5. [5 points] Write a differential equation whose general solution is $y = c_1 + c_2 e^{-2t} + c_3 t e^{-2t}$.

6. [15 points] Find the general solution to $y'' - 3y' + 2y = 4e^{-t} + t$.

7. **[15 points]** Find the general solution to $y'' - y = e^t$.

- 8. An object with mass m, where m > 1, is attached to a spring. The resulting position function u satisfies the equation mu'' + 2u' + u = 0.
 - (a) [5 points] Determine the quasi period as a function of mass m.

(b) [5 points] Determine the mass that gives the shortest possible quasi period.