Name: \qquad
Directions: Show all work. No credit for answers without work. When possible, final answers should involve real numbers only.

1. [10 points] Solve the IVP $2 y^{\prime \prime}-y^{\prime}-3 y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$.
2. Consider Euler's method to approximate the solution to $y^{\prime}=y$ passing through $(0,1)$.
(a) [10 points] With step size h and starting with $\left(x_{0}, y_{0}\right)=(0,1)$, use Euler's method to compute $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. Hint: factor your answer for y_{2} and y_{3}.
(b) [5 points] Use part (a) to give formulas for x_{n} and y_{n} in terms of n and h.
3. [15 points] Find the general solution to $y^{\prime \prime}-10 y^{\prime}+29 y=0$.
4. [15 points] Find the general solution to $y^{(5)}+2 y^{(4)}-3 y^{(3)}=0$.
5. [5 points] Write a differential equation whose general solution is $y=c_{1}+c_{2} e^{-2 t}+c_{3} t e^{-2 t}$.
6. [15 points] Find the general solution to $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{-t}+t$.
7. [15 points] Find the general solution to $y^{\prime \prime}-y=e^{t}$.
8. An object with mass m, where $m>1$, is attached to a spring. The resulting position function u satisfies the equation $m u^{\prime \prime}+2 u^{\prime}+u=0$.
(a) [5 points] Determine the quasi period as a function of mass m.
(b) [5 points] Determine the mass that gives the shortest possible quasi period.
